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Dear Reader,

We are pleased to present you with the Fall 2019 edition of OR/MS Tomorrow. This issue has been made
possible by the hard work of our entire staff.

We are excited to announce the results from our first ever student writing competition conducted earlier
this year. The three winning articles, spanning topics from AI in healthcare to OR in gerrymandering, are
published in this issue. The judging committee, consisting of our writing staff and editorial board members,
evaluated the submissions based on criteria such as argument, topic and form.

Breaking tradition from our theme-based publications, this issue brings to you contributed articles rang-
ing from biodiversity preservation to market design. We also include an informational piece on CMU IN-
FORMS Student Chapter’s student-run competition, YinzOR, which has steadily grown over the last sev-
eral years in participation and impact. We wish them continued success in the years to come.

Additionally, to engage more broadly with the OR/MS student community, our staff has made regular con-
tributions to a new student column at OR/MS Today. Contributed pieces include navigating the OR/MS
academic job market - one from a candidate’s perspective (here) and one from a hiring committee’s per-
spective (here) – and a column on the industry job market (here). We also compiled an article on student
volunteering (here) with perspectives from six contributors on how volunteering impacted their professional
and personal lives.

We thank the OR/MS community for its continued engagement with our team. We hope you enjoy this
issue’s content, and we always welcome your thoughts regarding OR/MS Tomorrow via email at orms_

tomorrow@mail.informs.org.

Note: We are hiring new team members across the board. More information
can be found here.

Best Regards,

Hossein Badri and Rahul Swamy,
Co-Lead Editors,
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Operations Research v.

Gerrymandering

Samuel Gutekunst
FIRST PRIZE

The U.S. legal system is facing a flood of court
cases that argue that certain political dis-

tricts have been drawn to provide partisan advan-
tage. Such a phenomenon is known as partisan
gerrymandering, but demonstrating partisan ger-
rymandering has proved difficult. In the words
of Justice Ginsburg, “the court...has not found a
manageable, reliable measure of fairness for deter-
mining whether a partisan gerrymander violates
the Constitution” (Liptak, 2017). Operations re-
search is being applied to meet this challenge.

Figure 1, modified from Ingraham (2015), illus-
trates gerrymandering and its impact. Fifty people
are to be split into five equally-sized, contiguous
districts. Each person belongs to either party S
(smiley-faces) or party A (angry-faces), and Fig-
ure 1 shows two districting plans with extremal
outcomes. Districts where S wins are shaded. In
the left plan, party S wins 100% of the districts
despite having only 60% of the votes. Conversely,
in the right plan party A wins a majority of the
districts despite having a minority of the votes.

Figure 1

Notice that, in the right plan, party A is able
to systematically waste S votes. In the three non-
shaded districts that A wins, the four losing S
votes are wasted: they could be used to win other
districts. In the two shaded districts, party S
only needs five votes to win (or, at least, tie); the
four extra S votes in each are again wasted. This
example begs the question: can we use analytics
to measure if district lines are fair?

Stephanopoulos and McGhee recently proposed
the efficiency gap as a litmus test for partisan ger-
rymandering (Stephanopoulos and McGhee, 2015).
Their proposed formula accounts for wasted votes
exactly as above: In districts where a party loses,

every vote cast for that party is wasted. In districts
where a party wins, every vote cast for that party
beyond the 50% threshold for winning is wasted.
In every single district of the S-favored plan of Fig-
ure 1, for example, party S wastes one vote while
party A wastes four. Let WA and WS respectively
denote the number of wasted votes for A and S
across an entire districting plan, and let T denote
the total number of votes cast. The efficiency gap
then compares the proportion of votes wasted by
each party:

EG = (WA −WS)/T.

An efficiency gap near zero indicates a plan where
the votes of neither party are being systemati-
cally wasted; Stephanopoulos and McGhee propose
that an efficiency gap of 0.08 or more indicates
that party A is being gerrymandered against.1

In the left plan of Figure 1, the efficiency gap
is EG = (20 − 5)/50 = 0.3 and indicates that
party A is being gerrymandered against. In the
right plan, in contrast, the efficiency gap is EG =
(5 − 20)/50 = −0.3 and indicates that party S is
being gerrymandered against.

It is a rare phenomenon, however, that a single
number can capture all of the context necessary
for making a decision. For example, since the 90’s
Massachusetts has had either nine or ten seats
in the U.S. House of Representatives. Despite a
sizable proportion of Republican voters (roughly
30%-40%), no Massachusetts Republican has won
a seat in the House since 1994. Such an extreme
outcome naturally raises suspicions of gerryman-
dering, but the issue Republican voters face in
Massachusetts is instead based on their geographic
distribution throughout the state. As a toy exam-
ple, consider Figure 2 which has 50 towns to be
split into five districts of ten towns each. Every
town has 2/3 support for S; any district composed
of ten towns will have 2/3 support for party S;
despite 1/3-map-wide support for A, party A will
not win a single seat!

The political distribution in Massachusetts is
less contrived, but the situation is analogous: the
locales with majority Republican support are not
numerous or clustered. Under election data from
several recent state-wide elections, Duchin et al.
(2018) uses analytics to argue that there is not a
possible districting plan that would give the Repub-
licans a single seat in the U.S. House. Moreover,
there is no possible districting plan that produces
an efficiency gap of less than 11%. The question

1This rule of thumb is specifically for state legislative dis-
tricting plans where a large efficiency gap is likely to persist
through multiple election cycles. Symmetrically, a gap less
than −0.08 indicates A is gerrymandering Stephanopoulos
and McGhee (2015).
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thus becomes: how can the efficiency gap account
for local geography and politics so that it can be
used in complex, real-world settings?

Figure 2

One tool to put metrics like the efficiency gap
into context is Markov chain Monte Carlo (MCMC)
simulation. Here MCMC simulation starts from
a proposed districting plan and generates a large
collection of random plans (an “ensemble”). Gen-
erally, these procedures start with a proposed plan
and iteratively make small, random adjustments
(e.g. moving a small number of voters from one
district to another). Such adjustments are con-
strained to only happen when they preserve tradi-
tional districting principles (e.g. keeping districts
contiguous).

As part of a recent case in the Pennsylvania
Supreme Court, Duchin used MCMC to generate
an ensemble with billions of possible districting
plans similar to a suspicious plan and computed
the efficiency gap of each (Duchin, 2018); the re-
sulting histogram is shown in Figure 3 (modified
from Duchin (2018)) where the red line indicates
the efficiency gap of the suspicious plan Duchin
was evaluating.

Figure 3 provides strong evidence that the sus-
picious plan was drawn with partisan intent: it
seems highly unlikely that a plan designed without
partisan intent would have such an extreme, large
efficiency gap.

Efficiency Gap
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Figure 3

The efficiency gap is an exciting and powerful
tool for identifying partisan gerrymandering. It
is most useful when it can be evaluated in the
proper political and geographical context; sophisti-
cated analytics tools from the operations research
community do just that. Many open questions
remain, from developing and strengthening met-
rics for identifying gerrymandering to developing
algorithms that draw fair districts. As progress on
these questions continues, operations research will
play a pivotal role in evaluating and disseminating
these tools for use in the real world.

Samuel Gutekunst is a fourth year PhD Student in
the School of Operations Research and Information
Engineering at Cornell University.
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Artificial Intelligence: The New
Hype in Healthcare

Jingmei Yang
SECOND PRIZE

The future of the healthcare industry has never
been as bright as today. The application of

Artificial Intelligence (AI) has made remarkable
progress in its impact across a range of medical ap-
plications including drug discovery, remote patient
monitoring, medical diagnostics, risk management,
virtual assistants and hospital management. Im-
provements in accuracy and efficiency are made
possible by innovations in deep neural networks
and high-end computational resources in combina-
tion with increasing availability of medical data.
In this report, we summarize some significant AI
innovations in healthcare followed by a discussion
on future challenges and opportunities.

AI is achieving the expert-level disease di-
agnostics. AI is achieving expert-level prediction
and diagnosing of diseases based on image recogni-
tion using deep neural networks.
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AI can help dermatologists diagnose skin cancer.

Roughly 5.4 million incidences of skin cancer are
reported annually in the United States. Early de-
tection of skin cancer allows medical practitioners
and patients to take proactive action in treatment
(Rogers et al., 2012). In 2017, a deep convolu-
tion network was built for automated dermatology
by Esteva et al. (2017) at Stanford. Trained on
129,450 images comprised of 2,032 diseases, the
system achieved accuracy levels on par with der-
matologists. Powered with this framework, one
possible application is to mobile devices which can
potentially extend the reach of specialists, widen-
ing the scope of primary care practice and offering
a low-cost approach to diagnostic care.
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lesions. In this task, the CNN achieves 72.1 ±​ 0.9% (mean ±​ s.d.) overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±​ 1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity
true positive

positive

=specificity
true negative

negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 

Acral-lentiginous melanoma
Amelanotic melanoma
Lentigo melanoma
…

Blue nevus
Halo nevus
Mongolian spot
…

Training classes (757)Deep convolutional neural network (Inception v3) Inference classes (varies by task) 

92% malignant melanocytic lesion

8% benign melanocytic lesion

Skin lesion image

Convolution
AvgPool
MaxPool
Concat
Dropout
Fully connected
Softmax

Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Convolution network for skin diseases detection, Source:
Esteva et al. (2017), picture courtesy of the authors.

AI supports the diagnosis of cardiovascular dis-
eases. Cardiovascular risk can be revealed through
analysis of retinal fundus images, a non-invasive
way to visualize blood vessels. Companies such
as Google have dedicated resources to developing
models which can extract and quantify risk markers
in retinal images. Risk factors such as age, gender,
smoking status, and systolic blood pressure have
been used in well established cardiovascular risk
calculators such as SCORE (Framingham and Sys-
temic Coronary Risk Evaluation), however, were
previously not extracted from retinal images. In
the Nature paper by Poplin et al. (2018), they
demonstrated how to identify the presence of these
risk factors in the retina. This neural network
model is capable of predicting cardiovascular risk
directly through retinal images and quantifies the
risk factors to a degree of precision not achieved
before Poplin et al. (2018). With the aid from such
an AI system, cardiovascular risk can be obtained
immediately from non-invasive retinal images.

AI can be used for retinal disease diagnosis. A
research team in DeepMind developed an innova-
tive framework that investigates eye scans from
routine clinical practice. In a paper published in
Nature, De Fauw et al. (2018) demonstrated that
an AI system is capable of automatically identify-
ing retinal diseases in only a minute. Additionally,
the system can classify patients based on their
severity and redistribute medical resource to the
patients most in need of urgent care. This prioriti-
zation attempts to reduce the long delays between

scan and treatment resulting from the complexity
of interpreting the Optical Coherence Tomogra-
phy images and the reducing numbers of qualified
interpreters. This framework can make referral rec-
ommendations for over 50 sight-threatening retinal
diseases at a level comparable to clinical experts
and has great potential for preventing patients
with diabetic retinal disease from sight loss.

ArticlesNATUre Medicine

pathology affecting the macula, the central part of the retina that is 
required for high-resolution, color vision.

Automated diagnosis of a medical image, even for a single dis-
ease, faces two main challenges: technical variations in the imaging 
process (different devices, noise, ageing of the components and so 
on), and patient-to-patient variability in pathological manifestations 
of disease. Existing deep learning approaches8,9 tried to deal with all 
combinations of these variations using a single end-to-end black-box 
network, thus typically requiring millions of labeled scans. By con-
trast, our framework decouples the two problems (technical varia-
tions in the imaging process and pathology variants) and solves them 
independently (see Fig. 1). A deep segmentation network (Fig. 1b)  
creates a detailed device-independent tissue-segmentation map. 
Subsequently, a deep classification network (Fig. 1d) analyses this 
segmentation map and provides diagnoses and referral suggestions.

The segmentation network (Fig. 1b) uses a three-dimensional 
U-Net architecture13,14 to translate the raw OCT scan into a tis-
sue map (Fig. 1c) with 15 classes including anatomy, pathology 
and image artefacts (Supplementary Table 2). It was trained with 
877 clinical OCT scans (Topcon 3D OCT, Topcon) with sparse 
manual segmentations (dataset 1 in Supplementary Table 3, see 
Methods ‘Manual segmentation’ and ‘Datasets’ for full breakdown 
of scan dataset). Only approximately three representative slices 
out of the 128 slices of each scan were manually segmented (see 
Supplementary Table 4 for image sizes). This sparse annotation pro-
cedure14 allowed us to cover a large variety of scans and pathologies 
with the same workload as approximately 21 dense manual segmen-
tations. Examples of the output of our segmentation network for 
illustrative pathologies are shown in Fig. 2.

The classification network (Fig. 1d) analyses the tissue-seg-
mentation map (Fig. 1c) and as the primary outcome provides 
one of four referral suggestions currently used in clinical practice 
at Moorfields Eye Hospital (please see Supplementary Table 1 for a 

list of retinal conditions associated with these referral suggestions). 
Additionally, it reports the presence or absence of multiple, con-
comitant retinal pathologies (Supplementary Table 5). To construct 
the training set for this network, we assembled 14,884 OCT scan 
volumes obtained from 7,621 patients who were referred to the hos-
pital with symptoms suggestive of macular pathology (see Methods 
‘Clinical labeling’). These OCT scans were automatically segmented 
using our segmentation network. The resulting segmentation maps 
with the clinical labels built the training set for the classification 
network (dataset 3 in Supplementary Table 3, illustrated in Fig. 1d).

A central challenge in OCT-image segmentation is the presence 
of ambiguous regions, where the true tissue type cannot be deduced 
from the image, and thus multiple equally plausible interpreta-
tions exist. To address this issue, we trained not one but multiple 
instances of the segmentation network. Each network instance cre-
ates a full segmentation map for the given scan, resulting in mul-
tiple hypotheses (see Supplementary Fig. 1). Analogous to multiple 
human experts, these segmentation maps agree in areas with clear 
image structures but may contain different (but plausible) interpre-
tations in ambiguous low-quality regions. These multiple segmen-
tation hypotheses from our network can be displayed as a video, 
in which the ambiguous regions and the proposed interpretations 
are clearly visible (see Methods ‘Visualization of results in clinical 
practice’; use of this viewer across a range of challenging macular 
diseases is illustrated in Supplementary Videos 1–9).

Achieving expert performance on referral decisions. To evaluate 
our framework, we first defined a gold standard. This used infor-
mation that is not available at the first patient visit and OCT scan, 
by examining the patient clinical records to determine the final 
diagnosis and optimal referral pathway in the light of the (subse-
quently obtained) information. Such a gold standard can only be 
obtained retrospectively. Gold standard labels were acquired for 
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Fig. 1 | Our proposed AI framework. a, Raw retinal OCT scan (6 ×​ 6 ×​ 2.3 mm³ around the macula). b, Deep segmentation network, trained with manually 
segmented OCT scans. c, Resulting tissue segmentation map. d, Deep classification network, trained with tissue maps with confirmed diagnoses and 
optimal referral decisions. e, Predicted diagnosis probabilities and referral suggestions.
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Retinal disease diagnosis and referral suggestions
framework. Source: De Fauw et al. (2018), picture

courtesy of the authors.

AI can support speech synthesis. Edward
Chang, a neurosurgeon, collaborated with a re-
search team at the University of California - San
Francisco successfully map brain signals into au-
ditable expression using AI (Anumanchipalli et al.,
2019). Recurrent neural networks were trained on
brain signals collected from five epilepsy subjects
to predict articulatory movements in the tongue,
lips, jaw, and larynx. Next, the networks mapped
the estimated movements onto synthesized phonic
speech. This pioneering technology has a direct
application in speech-decoding devices for people
with speech impairments resulting from stroke,
traumatic brain injury, or neurological diseases
like multiple sclerosis and Parkinson’s disease.ArticleRESEARCH

the sentences when the participant was not speaking. Extended Data 
Figure 1a, b illustrates the quality of reconstruction at the phonetic 
level. Median spectrograms of original and synthesized phonemes—
units of sound that distinguish one word from another—showed that 
the typical spectrotemporal patterns were preserved in the decoded 
examples (for example, resonant frequency bands in the spectrograms 
called formants F1–F3 in vowels /i:/ and /æ/; and key spectral patterns 
of mid-band energy and broadband burst for consonants /z/ and /p/, 
respectively).

To understand to what degree the synthesized speech was percep-
tually intelligible to naive listeners, we conducted two listening tasks 
that involved single-word identification and sentence-level transcrip-
tion, respectively. The tasks were run on Amazon Mechanical Turk 
(see Methods), using all 101 sentences from the test set of participant 1.

For the single-word identification task, we evaluated 325 words 
that were spliced from the synthesized sentences. We quantified the 
effect of word length (number of syllables) and the number of choices  
(10, 25 and 50 words) on speech intelligibility, since these factors 
inform optimal design of speech interfaces18. Overall, we found that 
listeners were more successful at word identification as syllable length 
increased, and the number of word choices decreased (Fig. 2a), con-
sistent with natural speech perception19.

For sentence-level intelligibility, we designed a closed vocabulary, 
free transcription task. Listeners heard the entire synthesized sentence 
and transcribed what they heard by selecting words from a defined pool 
(of either 25 or 50 words) that included the target words and random 
words from the test set. The closed vocabulary setting was necessary 
because the test set was a subset of sentences from MOCHA-TIMIT20, 
which was primarily designed to optimize articulatory coverage of 
English but contains highly unpredictable sentence constructions and 
low-frequency words.

Listeners were able to transcribe synthesized speech well. Of the 
101 synthesized trials, at least one listener was able to provide a perfect 

transcription for 82 sentences with a 25-word pool and 60 sentences 
with a 50-word pool. Of all submitted responses, listeners transcribed 
43% and 21% of the trials perfectly, respectively (Extended Data Fig. 2). 
Figure 2b shows the distributions of mean word error rates (WER) of 
each sentence. Transcribed sentences had a median 31% WER with 
a 25-word pool size and 53% WER with a 50-word pool size. Table 1 
shows listener transcriptions for a range of WERs. Median level tran-
scriptions still provided a fairly accurate, and in some cases legitimate, 
transcription (for example, ‘mum’ transcribed as ‘mom’). The errors 
suggest that the acoustic phonetic properties of the phonemes are still 
present in the synthesized speech, albeit to the lesser degree (for exam-
ple, ‘rabbits’ transcribed as ‘rodents’). This level of intelligibility for 
neurally synthesized speech would already be immediately meaningful 
and practical for real world application.

We then quantified the decoding performance at a feature level  
for all participants. In speech synthesis, the spectral distortion of  
synthesized speech from ground-truth is commonly reported using  
the mean mel-cepstral distortion (MCD)21. Mel-frequency bands 
emphasize the distortion of perceptually relevant frequency bands of 
the audio spectrogram22. We compared the MCD of neurally synthe-
sized speech to a reference synthesis from articulatory kinematics and 
chance-level decoding (a lower MCD is better; Fig. 2c). The reference 
synthesis simulates perfect neural decoding of the kinematics. For our 
five participants (participants 1–5), the median MCD scores of decod-
ing speech ranged from 5.14 dB to 6.58 dB (P < 1 × 10−18, Wilcoxon 
signed-rank test, for each participant).

We also computed the correlations between original and decoded 
acoustic features. For each sentence and feature, the Pearson’s correla-
tion coefficient was computed using every sample (at 200 Hz) for that 
feature. The sentence correlations between the mean decoded acoustic 
features (consisting of intensity, MFCCs, excitation strengths and voic-
ing) and inferred kinematics across participants are plotted in Fig. 2d. 
Prosodic features such as pitch (F0), speech envelope and voicing were 
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Fig. 1 | Speech synthesis from neurally decoded spoken sentences. 
a, The neural decoding process begins by extracting relevant signal 
features from high-density cortical activity. b, A bLSTM neural network 
decodes kinematic representations of articulation from ECoG signals. 
c, An additional bLSTM decodes acoustics from the previously decoded 
kinematics. Acoustics are spectral features (for example, MFCCs) 
extracted from the speech waveform. d, Decoded signals are synthesized 

into an acoustic waveform. e, Spectrogram shows the frequency content 
of two sentences spoken by a participant. f, Spectrogram of synthesized 
speech from brain signals recorded simultaneously with the speech in e  
(repeated five times with similar results). MCD was computed for 
each sentence between the original and decoded audio. Fivefold cross-
validation was used to find consistent decoding.

4 9 4  |  N A T U RE   |  V O L  5 6 8  |  2 5  A P RIL    2 0 1 9

The neural decoding process with AI, picture taken from
Anumanchipalli et al., (2019).
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AI in Radiology. Recently there has been a mas-
sive amount of publications using deep learning to
process medical imaging such as image denoising,
segmentation, and super-resolution. Of particular
interest is a research team from the University of
Texas at Southwestern Medical Center (UTSW)
lead by Dr. Steve Jiang. Due to increasing treat-
ment modalities in radiation therapy, treatment
planning is complicated and time-consuming for
dosimetrists. With an effort to cut down on the
planning time while maintaining quality, the team
from UTSW built a convolutional neural network
to predict the radiation therapy dose for prostate
cancer patients (Nguyen et al., 2019). By map-
ping the patient’s contours into local and global
features, the model is empowered to predict a dose
distribution with impressive accuracy. If equipped
with this dose prediction model in clinical practice,
physicians can use the prediction as a preliminary
plan and cooperate with dosimetrists for further
tailoring, making the planning workflow smooth
and efficient.www.nature.com/scientificreports/

3Scientific Reports |          (2019) 9:1076  | https://doi.org/10.1038/s41598-018-37741-x

Methods
U-net architecture for dose prediction.  As shown in Figure 2, we constructed a seven-level hierarchy 
U-net, with some innovative modifications made on the original design achieve the goal of contour-to-dose map-
ping. The input starts with 6 channels of 256 × 256 pixel images. Specifics of the input data is outlined in Section 
2.2. The choice for 7 levels with 6 max pooling operations was made to reduce the feature size from 256 × 256 
pixels down to 4 × 4 pixels, allowing for the 3 × 3 convolution operation to connect the center of the tumor to the 
edge of the body for all of the patient cases. Zero padding was added to the convolution process so that the feature 
size is maintained. Seven CNN layers, denoted with the purple arrows in Figure 2, were added after the U-net 
in order to smoothly reduce the number of filters to one, allowing for high precision prediction. Batch normal-
ization48 (BN) was added after the convolution and rectified linear unit (ReLU) operations in the U-net, which 
allows for a more equal updating of the weights throughout the U-net, leading to faster convergence. It should be 
noted that the original BN publication suggests performing the normalization process before the non-linearity 
operation, but we had found better performance using normalization after the ReLU operation—the validation’s 
mean squared error after 10 epochs was 0.3528 for using BN before ReLU and 0.0141 for using BN after ReLU.

To prevent the model from over-fitting, dropout49 regularization was implemented according to the scheme 

shown in Figure 3, which is represented by the equation: ( )dropout raterate max
current number of filters
max number of filters

n1/
= × . For our 

setup, we chose ratemax = 0.25 and the max number of filters = 1536. We chose n = 4 for the U-net layers, and n = 2 
for the added CNN layers. The choice for the dropout parameters was determined empirically, until the gap 
between the validation loss and training loss did not tend to increase during training.

The Adam algorithm50 was chosen as the optimizer to minimize the loss function. We used a learning rate of 
1 × 10−4, and the default Adam parameters β1 = 0.9, β2 = 0.999, and decay = 0. In total, the network consisted of 
46 layers. The deep network architecture was implemented in Keras51 with Tensorflow52 as the backend.

Figure 2.  Schematic of an example U-net architecture with additional CNN layers used for dose prediction. 
The numbers above the boxes represent the number of features for each map, while the numbers to the left of 
each hierarchy in the U-net represents the size of each 2D feature.

Figure 3.  Dropout scheme implemented for the U-net and CNN layers.

U-net architecture with additional CNN layers used for
dose prediction. Source: Nguyen et al. (2019), picture

courtesy of the authors.

Future challenges. Despite the promising ap-
plications, it is acknowledged that AI has unique
limitations when applied to healthcare such as clini-
cal interpretability, data heterogeneity, and patient
privacy.

Deep learning is often treated as a black box;
its features and parameters are challenging to un-
derstand and interpret in a healthcare setting. Not
being able to explain the internal mechanics of a
model is a barrier for the broad adoption of AI
since clinical practitioners place trust heavily on
interpretability. As such, researchers have worked
on developing interpretable AI systems. Hopefully,
this work will make AI systems easier to under-
stand and adopt in practice. Data heterogeneity
is another challenge. As shown in the study led
by Zech et al. (2018), image data from different

hospitals, vendors of imaging modalities and scan-
ners or reconstruction conditions has significant
influence on the model performance. Acquiring a
training dataset from diverse settings, nonidentical
populations, or multiple institutions is beneficial
to overcome this problem. Patients’ privacy is also
a concern. Unlike other domains, the healthcare
industry handles a lot of sensitive patients’ infor-
mation. How to balance the usage of all the data
and control the infringement of privacy of patients
requires care and effort when developing models.

External validation is necessary for AI to prove
its promise. All AI-based models need to be vali-
dated with clinical trials to test its practical value
and performance in a real-world setting. If clini-
cal performance is validated and interpretability
of the models are enhanced, AI has the potential
to positively impact clinical practice with better
performance and increased efficiency.

Jingmei Yang is a PhD Student in Industrial Engineer-
ing at the University of Texas at Arlington.
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The Longest Induced Path Problem:
How Far Can Information Travel?

Jessica Leung
THIRD PRIZE

Imagine you posted something on social media,
it may be a food review for that gorgeous restau-

rant you went to the other day, some brilliant ideas
worth sharing or even just a cool meme that you
wish everyone can see. Some of your friends shared
your post and their friends shared it further...have
you ever wondered how far your post could travel
and who ended up seeing it? To answer this ques-
tion, we wish to find the longest induced path in
the social network.

The longest induced path problem is to find
the largest subset of nodes in a graph that gives
a simple path without cycles (Johnson and Garey,
1979; Di Giacomo et al., 2016; Esperet et al., 2017).
To do so, we have to consider all possible acyclic
paths formed by all possible subsets of nodes in the
graph. Considering its combinatorial nature, the
longest induced path problem is known to be NP-
hard (Johnson and Garey, 1979). Given the inher-
ent computational complexity of the problem, the
literature offers limited insight on exact solution
approaches in general graphs but instead focuses
on subclasses of the problem that are polynomi-
ally solvable and on tightening the bounds of the
induced path length (Gavril, 2002; Courcelle et al.,
2000; Esperet et al., 2017). Fortunately, leveraging
the technological and algorithmic advancement in
recent decades, we can now formulate the longest
induced path problem as an integer programming
problem and solve it with an exact solution for any
general graph using standard off-the-shelf solvers
(e.g. Gurobi).

With the abundance of data available to us, we
can now study the longest induced path problem
and its implications in many different contexts.
For instance, in our motivating example, finding
the longest possible path of information transmis-
sion in a social network allows us to identify the
seed of the information cascade and the final entity
which sees this piece of information in the network.
Other applications include studying the communi-
cation property of complex systems to enhance our
understanding of the interacting elements within
the system, identifying gene regulation networks
in embryonic development, and diagnosing fault in
multiprocessor networks. Thus, in light of the nu-
merous practical applications, the longest induced
path problem is an interesting class of network
optimisation problems to study.

How exactly do we find the longest induced
path? Matsypura et al. (2019) provided three con-

ceptually different approaches that yield an exact
solution to the longest induced path problem in a
general graph setting; developed using interesting
facts about the longest induced path.

The first approach is underpinned by the sim-
ple observation that the longest induced path in a
graph is the subgraph with the maximum diame-
ter. We consider every possible connected subset
of nodes in the original graph as a subgraph. In
each subgraph, we compute the shortest paths be-
tween each pair of nodes where the greatest length
of these paths is the diameter of the subgraph.
This can be formulated as an integer programming
problem that searches for a connected subgraph
with the largest diameter which simultaneously
consists of the smallest number of nodes among
all possible subgraphs. Naturally, the subgraph
that gives the maximum diameter is essentially the
longest induced path.

The second approach stems from the feature
that the graph average distance is simply the aver-
age length of the shortest path between any two
nodes in a graph. For any connected graph with n
nodes, the graph average distance is known to be
at most (n + 1)/3 and is equal to (n + 1)/3 when
the graph is a path (Doyle and Graver, 1977).
Therefore, we can search for the largest connected
subgraph where its average distance is at least
(n + 1)/3.

The third approach leverages the intuition that
an induced path can also be viewed as a walk in
a graph with no short-cuts. Imagine we take a
walk in the graph, starting with one of the nodes.
Then we choose the next node to visit from one of
the neighbours of the current node. We traverse
through other nodes one at a time until we run
out of time or when no further moves are possible.
During our journey, we ensure that our route is
an induced path by never visiting a single node
twice and never taking shortcuts. In such a way,
we can formulate an integer programming problem
looking for the longest walk.

What’s next? Equipped with the tools to find
the longest induced path in any general graph,
we are offered an alternative perspective to view
problems in real world complex systems. We saw
that the longest induced path in a social media
network let us know how far information trav-
els. From a marketing point of view, this not
only indicates the reach of an advertisement but
also identifies a group of potential customers that
quite literally share the same interest. With the
additional information on customer segmentation
and market reach, businesses can now tailor their
digital marketing strategies to different interest
groups. A promising direction for future research
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is to consider different types of induced paths and
to develop more computational efficient methods.
This opens up new opportunities to gain a better
understanding of the communication properties of
underlying networks in many other real-life appli-
cations.

Jessica Leung is a PhD candidate in the Discipline of
Business Analytics at the University of Sydney Busi-
ness School.

References

1. Courcelle, B., J. A. Makowsky, and U. Rotics (2000).
Linear time solvable optimization problems on graphs
of bounded clique-width. Theory of Computing Sys-
tems 33(2), 125–150.

2. Di Giacomo, E., G. Liotta, and T. Mchedlidze (2016).
Lower and upper bounds for long induced paths in 3-
connected planar graphs. Theoretical Computer Sci-
ence 636, 47–55.

3. Doyle, J. and J. E. Graver (1977). Mean distance in a
graph. Discrete Mathematics 17 (2), 147–154.

4. Esperet, L., L. Lemoine, and F. Maffray (2017). Long
induced paths in graphs. European Journal of Combi-
natorics 62, 1–14.

5. Gavril, F. (2002). Algorithms for maximum weight
induced paths. Information Processing Letters 81(4),
203–208.

6. Johnson, D. S. and M. R. Garey (1979). Comput-
ers and intractability: A guide to the theory of NP-
completeness. WH Freeman.

7. Matsypura, D., A. Veremyev, O. A. Prokopyev, and E.
L. Pasiliao (2019). On exact solu- tion approaches for
the longest induced path problem. European Journal
of Operational Research.

Using Mathematical Optimization
to Preserve Biodiversity

Zulqarnain Haider
EDITORIAL BOARD MEMBER

Biodiversity. Reprinted from CNN (2010).

Mathematical optimization is defined as the
“science of better” and is used every day

by academics and practitioners to solve a myr-
iad of challenging and interesting problems. Opti-
mization models form the core of algorithms that
humans use to move intercontinental cargos, trans-
port billions of human beings, deliver better health

outcomes for patients, coordinate emergency relief
during disasters, design financial portfolios, and
achieve bottom-line savings for corporations. Can
magical powers of mathematical optimization also
be used to conserve millions of animal and bird
species and in the process save our planet and its
biodiversity? The answer is a resounding yes. Con-
servation planning is a burgeoning, although still
underserved, field of study that concerns itself with
the issues related to maintaining and increasing bio-
diversity. The unprecedented population growth
in the last century coupled with rapid industrial-
ization, and urbanization has strained our planet’s
resources. Agriculture and other economically ben-
eficial land use alternatives have caused rampant
deforestation resulting in the alteration and loss
of the habitats for many species (Polasky et al.,
2008). According to the Red List of Threatened
Species maintained by the International Union for
Conservation of Nature, about 28,000 animal and
plant species out of more than 105,700 listed are
threatened with extinction (IUCN, 2019). Pre-
serving biodiversity is crucial to human societies
and the future of planet Earth. Hence, its slow
erosion constitutes a threat as consequential as
that posed by climate change (Billionnet, 2013).
In this article, I briefly describe some of the key
problems and issues in the area of conservation
planning and how mathematical optimization can
help decision-makers in the modeling and imple-
mentation of decisions and strategies to protect
biodiversity.

Chief among conservation planning problems is
the selection and design of natural “reserves”: ar-
eas set aside for the preservation of natural values
– including recreation and ecosystem services (e.g.,
supply of timber) – or for the protection of bio-
diversity (Margules Pressey, 2000). The reserves
must be selected to fully represent and protect a
variety of species over the long term by supporting
viable population levels and eliminating threats
both natural (coming from other species) and man-
made (coming from commercial and development
activities). The decisions related to location, size,
and design of reserves must incorporate a wide
variety of managerial considerations, competing
objectives, and physical, economic and political
constraints. For example, reserves must be located
so they coincide with natural land features, like
watersheds. They can also be designed to meet
criteria for size, shape, connectivity, compactness,
and species complementarity. This problem lends
itself well to optimization methods including non-
linear programming, multiobjective optimization,
and combinatorial optimization, which have been
widely used to solve reserve selection and reserve
design problems of increasing complexity. Tak-
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ing into account multiple species, their survival
and growth models, the type and extent of threats
they face, and the economic consequences of any
management action makes this problem even more
interesting and challenging.

Another issue causing damage to biodiversity,
especially in developed countries, is land fragmenta-
tion, or the division of species’ habitats into smaller
areas that are not connected to each other. Habitat
fragmentation can be caused by new commercial
development, housing, roads, highways, or railway
lines, and can reduce a species’ population, mobil-
ity, and genetic diversity. Fragmentation can be
measured by multiple indicators. Two of the most
popular indicators are the mean nearest neighbor
distance (MNND) and the mean proximity index
(MPI), which estimate the relative isolation of the
parcels (Billionet, 2013). Minimizing these indica-
tor values can mitigate the fragmentation in a given
landscape. Another method to offset the effects of
fragmented landscapes is to connect them through
corridors, that is strips of land connecting larger,
isolated parcels through which the species can move
to migrate, reproduce, and escape. This extra mo-
bility can help protect the species by supporting
larger metapopulations (i.e., spatially separated
populations). Various models for reducing land
fragmentation have been proposed and can also be
solved using optimization models and algorithms.

Another well-studied problem concerns the elim-
ination and control of invasive species. Invasive
animal and plant species can cause significant dam-
age to biodiversity through predation, competition
for resources, genetic disturbance, and epidemics
(Billionet, 2013). Due to a lack of human and fi-
nancial resources, eliminating an invasive species
requires careful evaluation of alternative manage-
rial interventions for optimal deployment of those
limited resources. For any control action to bear
fruit, the spread dynamics of an invasion need to
be carefully considered. The scale, speeds, and
vectors of an invasion are highly dependent on the
species being considered and the specific physical
context of each invasion. To make matters more
complicated, the data about invasions and their
spatial-temporal spread are sparse and difficult to
procure. Thus, the control decisions rely on im-
perfect information and must be robust to various
uncertainties to be truly applicable in real settings.

Some other problems related to conservation
planning include long-term land use decisions, ad-
verse effects caused by landscape fragmentation,
rational use of forest resources, vegetation man-
agement, preservation of species’ genetic diversity,
wildfire control (Billionet, 2013), optimal deploy-
ment of resources to stem illegal poaching and
smuggling activity, studying a reserve’s resilience

to climate change, and planning for long-term risks
of climate change to a region’s biodiversity (Eaton
et al., 2019). Further research into using optimiza-
tion techniques to solve many different forms of
the aforementioned problems is duly warranted
and deserves the immediate attention of serious
operations research practitioners.

Zulqarnain Haider is a PhD candidate in the Industrial
and Management Systems Engineering Department at
University of South Florida.
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The Fast and the Furious: Market
Design and Operations Research

Sepehr Ramyar
STAFF EDITOR

Have you ever lined up in front of a store for
several hours on a Black Friday? Have you

ever wondered why professional Wall Street (high-
frequency) traders spend billions of dollars on IT
infrastructure just to get their bids processed be-
fore everyone else. The reason for both these situ-
ations is fundamentally no different. In situations
like these, there is value in being the first one in
line. This is the same reason that prompted the
’Sooners’ in the early 19th century to jump the gun
in the race for registering land claims in Oklahoma.
But what can you do when you have so many eager
participants and limited resources? Or how do you
optimize the performance of a system in presence
of different constraints? Beginning to sound like
operations research jargon?

It turns out that operations research concepts
make up the machinery behind many of our ev-
eryday market transactions. From calling Uber
on your smartphone, to the ads displayed on the
webpages you visit every day, or even in decisions
for high school admissions in many urban areas.
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In all such marketplaces, the market designer aims
to achieve the best performance as fast as possi-
ble. The definition of performance, however, de-
pends on the context. For instance, in the case
of online ads, the best performance means choos-
ing the most valuable ads (i.e., those with the
highest willingness-to-pay) while for high school
admissions, the mutual satisfaction of students and
schools with the allocations probably makes the
most sense. But how can this be achieved?

Oklahoma Land Rush. Sourced from
www.soonersports.com.

The primary objective of a market designer is
to process the orders of participants as fast and
safely as possible. Speed is important because it
enables participation of more customers in the mar-
ket. This is why Amazon and Airbnb have been
able to obtain a larger pool of customers than tra-
ditional retailers and hotels: they provide a faster
means of browsing through items and choosing
the one you like most. Safety is also important.
It means the customer (or the seller) would not
have to worry about the other party ‘gaming’ the
system. Here’s where operations research comes
in.

Operations research can help us design rules
for marketplaces to make them safe for everyone to
participate. In the online ad market, as mentioned
earlier, the desired outcome is to have each ad
slot allocated to the highest bidder. But does that
mean choosing the highest bidder and charging
them what they bid? This is in fact the mechanism
that was in place in the early days of online ads
and led to ‘bidding wars’ where everyone would bid
their least affordable price and minimally increas-
ing them with competing bids. This was not safe
for the market. First, it strained the market oper-
ator’s system as competitors would continuously
place bids in very short intervals. Second, it did
not guarantee whether the winner would be paying
equivalent of their true value for the item. The
solution came from operations research: an auction
where the highest bidder wins but pays the second-
highest bid also known as ‘Second-Price’ auction.

The second price auction guarantees ‘truth-telling’
in the sense that no participant would have an
incentive to misreport their value for the item by
overbidding or underbidding. The introduction
of generalized second price auctions significantly
improved the performance in online ad markets
that are considered the cash cows of giant tech
companies like Google. Later, around 2008, these
auctions were optimized with ‘reserve’ prices and
further boosted online ad revenues (Wurman et al.,
2001; Roughgarden, 2016).

The idea of second-best choice, however, is not
always the solution. In fact, for school admissions,
a source of instability of the market has chronically
been students and families misreporting their list
of preferred schools in hopes of maximizing their
chances of getting into the second-best school; be-
cause they figure listing their favorite school (which
is too hard to get into) on top of the list would
lower their chances of getting into the second-best
school, so they list their second-best as their first
choice. This leads to undesired market outcomes
with some schools ending up with empty seats
and some others withholding their capacity and
assigning their seats based on other criteria. The
solution, again, comes from game theory and opera-
tions research community: the well-known deferred
acceptance (DA) algorithm. In this algorithm, stu-
dents and schools both list their choices from most
to least preferred and then submit it to a ‘clearing
house’. The market clearing house would then
match the most preferred student (by the school)
to the most preferred school (by the student) given
the capacity of the school. The result is aston-
ishing: no assigned student would want to go to
another school (with available capacity) and no
school with full capacity would want to exchange
one of its students (because that student would
prefer to stay in the same school). Here, too, the
mechanism is ‘incentive-compatible’ (or truthful)
in the sense that students would have no incentive
to misreport their list of preferred school. This al-
gorithm was originally proposed by Lloyd Shapley
and David Gale for a hypothetical ‘marriage mar-
ket’ in 1962 and has since been improved and built
on for many applications (Roughgarden, 2016).

Almost any market these days is run on algo-
rithms that facilitate participation and improve effi-
ciency of the marketplace. From kidney exchanges
(Priority Pairwise Kidney Exchange algorithm) to
stock exchange (Double Auction), these algorithms
help operate markets in a fast and secure way that
scales to the level of computation and performance
required for today’s marketplaces with millions of
participants and billions of transactions every day;
and operations research is at the heart of what
makes all these markets work.
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Note: This article has largely been inspired by
the book “Who Gets What - and Why” by Alvin
Roth, a Nobel laureate in Economics that got his
Ph.D. in ‘operations research’. This is a great
read for anyone who is interested in learning about
market design and matching markets.

Sepehr Ramyar is a PhD student in Technology and In-
formation Management at the University of California,
Santa Cruz.

References

1. Roughgarden, T. Twenty lectures on algorithmic game
theory. Cambridge University Press, 2016.

2. Wurman, P.R., Wellman, M.P., and W.E. Walsh. A
parametrization of the auction design space. Games
and economic behavior 35.1-2 (2001): 304-338.

YinzOR: A Journey for the CMU
INFORMS Student Chapter

Sagnik Das

YinzOR is a single-track conference that brings
together students studying operations re-

search and related fields to facilitate interaction
and collaboration with peers. YinzOR came into
existence in 2017, when Aleksandr Kazachkov,
founding President of the Carnegie Mellon Uni-
versity (CMU) INFORMS Student Chapter, envi-
sioned a “conference of the students, by the stu-
dents and for the students”. Thiago Serra, the
President of our Chapter in 2017, coined the name
YinzOR, with “Yinz” being the local Pittsburgh-
ese version of you-ones or yous-ones (2nd person
plural pronoun), which derives from the Scots lan-
guage, sometimes called Lowland Scots, spoken
in southern Scotland until the late 18th century;
and “OR” stands for operations research. More
trivia about “yinz” is in our homepage of YinzOR
2019, courtesy of Professor John Hooker. Chris-
tian Tjandraatmadja designed the awesome logo
for YinzOR, featuring a bridge that symbolizes
Pittsburgh, also affectionately known as “The City
of Bridges.”

True to the original YinzOR vision, we have
hosted high quality conferences centered around

PhD students for the past two years. The featured
speakers at YinzOR are professionals who have
recently graduated from their academic program
and joined academia or industry. For invited talks,
our goal is to feature PhD students from diverse
OR/MS backgrounds. A nomination and voting
process is used by the organizing committee to
choose and invite outstanding young researchers
from various institutions.

The inaugural YinzOR was held in August 2017
at the Tepper School of Business, Carnegie Mellon
University (CMU). YinzOR 2017 was chaired by
Aleksandr Kazachkov, who was assisted by a team
of 11 members. We had the pleasure of hosting as
our featured speakers Noam Brown, PhD student
from CMU Computer Science Department (now
at Facebook AI Research); Hamsa Bastani, Post-
doc at IBM Research (now Assistant Professor at
Wharton) and Francisco Trespalacios from Exxon
Mobil. More than 60 students from CMU, Uni-
versity of Pittsburgh (UPitt), and Lehigh Univer-
sity participated and enjoyed valuable networking
opportunities with fellow students. More details
about the 2017 conference can be found on our
conference website.

YinzOR 2017 Group Photo

Last year marked the second time that CMU
INFORMS Student Chapter organized YinzOR.
YinzOR 2018 was chaired by Neda Mirzaeian, who
was assisted by a committee of 15 members. The
conference, sponsored by EQT Corporation and
Tepper School of Business, consisted of three fea-
tured talks, eight regular-track talks, a 12-person
poster competition, as well as a few interactive
coffee breaks and a happy hour. During YinzOR
2018, we had the privilege of hosting more than 70
attendees. It was an honor to host invited student
speakers from Wharton, University of Michigan,
and Lehigh University, in addition to local invited
student speakers from CMU and UPitt. The fea-
tured speakers were Can Zhang, Assistant Profes-
sor at Fuqua School of Business at Duke University,
Miles Lubin from Google Research, and Markus
Drouven from EQT Corporation.

A well-received addition to YinzOR 2018 was
the poster competition open to all PhD students
in related fields. The panel of judges for the poster
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competition consisted of four CMU faculty mem-
bers: Gerard Cornuejols, John Hooker, Fatma
Kilinc-Karzan, and R. Ravi. In a tough competi-
tion, Po-Wei Wang won first prize. YinzOR 2018
ended with the most important event of all: Happy
Hour. It was held in the biggest balcony of the
Tepper Quad, where the participants enjoyed a
nice view of the beautiful city of Pittsburgh, and
discussed ORMS (and life!). More details about
YinzOR 2018 can be found on our conference web-
site and from this detailed blog written by Neda
Mirzaeian.

YinzOR 2018 Group Photo

Happy hour during YinzOR 2018

I am personally very excited to share my ex-
periences with the preparation for YinzOR 2019,
which took place on August 23rd and 24th at the
new Tepper Building, Tepper Quad. I am part of
the YinzOR 2019 Organizing Committee chaired
by Violet Chen and Ozgun Elci. Our featured
speakers this year are Thiago Serra, who recently

joined Bucknell University as an Assistant Profes-
sor, and Joann de Zegher and Daniel Freund, who
both recently joined MIT Sloan as Assistant Profes-
sors. The invited speakers are from CMU Tepper,
Chicago Booth, Columbia, Cornell, Georgia Tech
and MIT Operations Research Center. For our
poster competition this year, we have submissions
from students from CMU, Georgia Tech, Virginia
Tech, Purdue, Johns Hopkins, Lehigh, MIT, Cor-
nell, Polytechnique Montreal, and University of
Illinois. This year, we are also introducing another
fun event: Flash Talks, where participants will
have to explain their work without using “taboo
words.” The taboo words will be selected by the
event coordinator based on the most frequently
used words in the abstract.

Our preparations for YinzOR 2019 started on
a high note as we were able to secure substantial
sponsorship (around four times higher than last
year) with FedEx and McKinsey Company as
our Silver Sponsors and Simio, Tepper School of
Business, and the OR Department at Tepper as
our Bronze Sponsors. The external sponsorship
was made possible by the support from our fac-
ulty members Sridhar Tayur and Willem-Jan van
Hoeve. This additional funding played a role in
attracting participation from more major univer-
sities on the East Coast. Like previous years, we
are giving full travel support and accommodation
to all featured speakers. For invited speakers, in
addition to partial travel support, this year we are
providing accommodation. Furthermore, we are
providing accommodation to all the poster com-
petition and Flash Talk participants who reside
outside of Pittsburgh.

As YinzOR is expanding, we are actively seek-
ing to outsource as much logistic work as possible
to make planning the event smoother. In the past
years, most of the logistics of the conference were
handled by the organizing committee. This year,
we will have catering services take care of the cof-
fee breaks. Our chapter’s vision is to completely
outsource all logistics in future editions of YinzOR,
which will enable the organizing committee to fo-
cus mainly on improving the quality and diversity
of invited talks and poster and Flash Talk submis-
sions, and market the conference to a larger base.

Please visit our conference website to learn
more about YinzOR and our student chapter web-
site to learn more about the CMU INFORMS Stu-
dent Chapter!

Sagnik Das is a PhD Student in Carnegie Mellon Uni-
versity’s Tepper School of Business and Vice President
of the CMU INFORMS Student Chapter.
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