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Student Introduction and Interaction Session
& Best Student Poster Competition
Quality, Statistics and Reliability (QSR) Section

The session is designed for QSR student members to build their professional network, show up their
talents, and learn from invited guests. In this session, each student will deliver an elevator speech
about his/her research interests and accomplishments. Senior QSR members, junior faculty
members are invited to interact with all attendees. A parallel Best Student Poster Competition
session is pre-recorded. A winner will be selected by a panel of judges, announced at the QSR
business meeting, and awarded a certificate. The Student Introduction and Interaction session and
Best Student Poster Competition are sponsored by the QSR Section of the INFORMS.

PROGRAM AT GLANCE:

Live session: Student Introduction and Interaction
4:30 PM - 5:45PM (EDT), November 09, 2020
Virtual Room 44

o 4:30 —4:45 pm: Panelists’ Introduction
e 4:45-5:20 pm: Student Elevator Speech, 2 min / each student
e 5:20 - 5:45 pm: Mini-panel, Q&As, and open interactions with the panelists

Pre-recorded session: Best Student Poster Competition

Ahmed Aziz Ezzat, Ph.D.

Assistant Professor

Department of Industrial and Systems Engineering
Rutgers University

Email: aziz.ezzat@rutgers.edu

Xiaochen Xian, Ph.D.

Assistant Professor

Department of Industrial and Systems Engineering
University of Florida

E-mail: xxian@ufl.edu
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BIO

Dr. Susan Albin is a Professor in the Department of Industrial Engineering
at Rutgers University. Her research fields are quality engineering,
statistical process control, data analytics, and stochastic modeling. Her
work has been applied in areas including semiconductor manufacturing,
plastics recycling, food processing, and medical devices. Dr. Albin's
work has been supported by NSF, FAA, DOD, and industrial partners. Dr.
Albin received her doctorate from Columbia University. She has served
as President of INFORMS, editor-in-chief of IIE Transactions, and was the
founding advisory board chair for QSR. On her sabbatical she helped
establish a Quality Engineering program at Penninsula Technicon in South
Africa. Her current focus is on active learning methods for effective
teaching. She is a fellow of INFORMS and of IISE.



BIO

Jeff Kharoufeh is Professor and Chair of the Department of Industrial
Engineering at Clemson University. He specializes in the application of
probability and stochastic processes to the modeling, design,
performance evaluation and optimal control of stochastic systems. His
research focuses on energy systems, stochastic service systems,
reliability theory and maintenance optimization. He earned a Ph.D. in
Industrial Engineering and Operations Research at the Pennsylvania State
University. Professor Kharoufeh currently serves as Area Editor for
Operations Research Letters, Associate Editor for Operations Research
and as a member of the Editorial Board for Probability in the Engineering
and Informational Sciences. He is a Fellow of the Institute of Industrial and
Systems Engineers (IISE) and a professional member of INFORMS and the
Applied Probability Society (APS).



BIO

Jing Li is a Professor in the H. Milton Stewart School of Industrial and
Systems Engineering at Georgia Tech. Prior to joining Georgia Tech in
2020, she was a Professor at Arizona State University and is a co-founder
of the ASU-Mayo Clinic Center for Innovative Imaging.

Dr. Li’s research develops statistical machine learning algorithms for
modeling and inference of medical image data, and fusion of images,
genomics, and clinical records for personalized and precision medicine.
Her research outcomes support clinical decision making for diagnosis,
prognosis, and telemedicine for various conditions affecting the brain,
such as brain cancer, post-traumatic headache & migraine, traumatic
brain injury, and the Alzheimer’s disease. Her research received Best
Paper awards from various professional venues such as IISE Transactions,
IISE Annual Conferences, INFORMS Data Mining and Decision Analytics,
American Academy of Neurology, America Headache Society, etc. Her
research has been funded by the NIH, NSF, DOD, and industries. She is an
NSF CAREER Awardee.

Dr. Liis a former chairperson for the Data Mining Subdivision of INFORMS.
She is currently the editor-in-chief for Quality Technology and
Quantitative Management, an associate editor for IISE Transactions on
Healthcare Systems Engineering, and an associate editor for IEEE
Transactions on Automation Science and Engineering.



BIO

Dr. Arman Sabbaghi is an Associate Professor in the Department of
Statistics, and an Associate Director of the Statistical Consulting Service,
at Purdue University. He received his PhD in Statistics from Harvard
University in 2014, his AM in Statistics from Harvard University in 2011,
and his BS in Mathematics (with Honors) and BS in Mathematical Statistics
from Purdue University in 2009. Dr. Sabbaghi's research interests are in
Bayesian data analysis, experimental design, and causal inference. Dr.
Sabbaghi has received funding from the National Science Foundation, the
National Institutes of Health, and Sandia National Laboratories. Dr.
Sabbaghi's publications have appeared in statistics and engineering
journals, such as the Annals of Applied Statistics, Biometrika, Statistical
Science, Technometrics, IIE Transactions on Quality and Reliability
Engineering, IEEE Transactions on Automation Science and Engineering,
and Nano Energy. He has served as a reviewer for the National Science
Foundation and multiple statistics and engineering journals.



BIO

Dr. Murat Yildirim is an Assistant Professor in the Department of Industrial
and Systems Engineering at Wayne State University. Prior to joining
Wayne State, he worked as a postdoctoral fellow at the Georgia Institute
of Technology (2016-2018). Dr. Yildirim's research interest lies in
advancing the integration of mathematical programming and data
analytics in various application domains. Specifically, he focuses on the
modeling and the computational challenges arising from the integration
of real-time inferences generated by advanced data analytics and
simulation into large-scale mathematical programming models used for
optimizing and controlling networked systems.
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SHADI SANOUBAR

INTRODUCTION

My primary research interests are in sequential decision making
under uncertainty, Markov decision processes, stochastic modeling,
and applied probability, with focus on establishing theoretical
properties of optimal policies and cost functions. My contributions
have mainly been motivated by problems arising in maintenance
optimization and reliability, yet | am also interested in applications
in medical decision making and humanitarian logistics.
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QSR Student Poster Competition, INFORMS 2020

Dynamic Repositioning of Condition-Based Maintenance Resources
Shadi Sanoubar, University of Pittsburgh, Department of Industrial Engineering
Joint work with Drs. Bram de Jonge {University of Groningen), Lisa Maillart, and Oleg Prokopyev
11/9/2020

Motivation Findings
* Recent advances in sensor technologies facilitate the implementation of adaptive, condition based The MDP model enables us to study unigue trade-offs;
maintenance (CBM) policies o 1 oty o
« In many CBM applications, the assets being maintained are geographically dispersed and the e o e T
maintenance resources are limited Iocatians. Lach asset hes fou
rangig from 1 35-ge

U ghter asset noo=s indica

oﬁ

Maintaining an asset earlier than we
would for that asset in isolation
(Proximal Maintenance)

Self-propelled swimming SecondHands: a maintenarce Locormotive industry with Proxmal Mamw“:‘::i:ipamry Idl?ng
robots used for maintaining robot that offers help to assets distributed on a railroad _/ k’ - E

subsea installations maintenance technicians in network
futfillment centers Idling near the lacation of one asset even 1?1' ..k FE T - FRGR

when another asset needs maintenance — == =
{Anticipatory Idling}

Requires a novel framewarle to minimize ¢osts by jointly optimizing the H o

* position of a maintenance resource
+ timing of condition-based maintenance interventions Strategic Repositioning

Repositioning even though no asset is yet 5 .
in need of maintenance A & o ke
i [ A

(Strategic Repositioning)
Research Problem &
Farmulate a Markow Decision Process [MDP) to obtain the optiral actions of a maintenance resource e o
responsible for the maintenance activities of a set of geagraphically dispersed assets 1
Additional Findings

1

State assets’ deterioration conditions and maintenance resource pasition Structural properties of the optimal policies
Actions Idle g Trave\f’i_, Repair 3¢ Quantifying several metrics of interest (e.g., percentage of time when idling is optimal) through

simulation
Costs down time, travel, repair . . . !
The effects of changes in parameter values ie.g.. downtime, travel, or repair costs) on optimal palicies
and metrics

Transition Probabilities obtained from DTMCs
Easy-to-implement heuristic policies
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SHENGHAN GUO

INTRODUCTION

My research focus on data-driven decision-making and predictive
analytics. In-situ data from advanced manufacturing processes, e.g.,
laser-based additive manufacturing (AM), hot stamping, are
complex. They may have high dimensionality and inter-attribute
dependency or contain spatial-temporal correlations. To explore
the decision-making value in these data, my research develops three
branches of methods: (l) pattern recognition and analysis in
multivariate times series for fault prediction, (2) spatial-temporal
modeling and monitoring of AM thermal images for defect
prediction, and (3) domain-knowledge-informed deep learning for
defect prediction in AM with a small data amount. My research plan
in near future is to expand my exploration in (3) and develop
machine learning methods that integrates real data and
expert/empirical knowledge for explainable learning process and
prediction.
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LBAM-cGAN: Use Physics-Guided Deep Learning to Predict Transient Thermal Signatures in
Additive Manufacturing

RUTGERS

By Shenghan Guo®, Weihong "Grace” Guo’} and Linkan Bianb‘ Contact: sg888@scarletmail rutgers.edu, wg152@soe.rutgers.edu . .
School of Engineering

“Department of Industrial and Systems Engineering, Data Analytics and Process Insights Laboratory, Rutgers University
*Department of Industrial and Systems Engineering, Center for Advanced Vehicular Systems (CAVS), Mississippi State University

Introduction
- Additive Mamiacturing (AM). also known as *3D printing”. is a rapid prototyping
technology that produces complex 3D parts directly frem a computer-aided
design model by adding materials |ayer by layer (Gibson et af.. 2014)
- Cumently, the primary focus of LBAM is on customization of low volume, high-
value-added products that can be manufactured guickly.

A Ti-6Al-AV thin wall
from LBAM

Applications

-

Advanced
Tusbnprap engine )

Advanced uses of LBAM parts pose high requirements for the part quality.

Problem:
+ The trending approach for LBAM quality control is data-driven prediction of
iransient thermal sr‘gnarures (e g., thermal images of melt poal).

e
Data
culle:um

« Data-driven methods, e.q. statistical analysis. machine Iearmng fdeep learhing
iDLy, require a large amount of data to train the model/approach.

« However, the low production volume in LBAM applications limits the data
availability, thus the use of data-driven defect prediction!

Tuvth urown

st LEAM part
defects. £.9
porosity. lack of
fusion, ara directly
related fo the
abnoimal emnal
signaturas,

Real-time data
collaction with
infrared camer
or pyrometer

Objectives
Develop a Dl-based data-driven approach for predicting the transient thermal
signatures of LBAM parts. The method should
1. Accurately predict transient thermal signatures using the knowledge leamed from a
small amount of training data e

2. Generate physicaly valid predictions for LBAM N [ _
Physics-guided image selection (PGIS)

LBAM-cGAN

PGIS control chart
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Conclusion
B + LBAM-cGAN was proposed ta predict transient thermal signatures, ie.,

uided Thermal

+ Age-GGAN {Antipov, 2017} was developed based on
Adversarial Nefwork ([cGAN) to "age” human faces. 2 Intensively used for human
face generation
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thermal images of melt paol, in LBAM conditionally on layer index

- Physics-guided image selection is combinad with LBAM-CGAN to selact
those physically valid synthesized images and discard those invalid
ones.

References & Ackno

Gibson, L Rosen. . 4, 310 Sicka B, 2014) 9 manuacurng ennolsgs,
Pre it Soeingen pip 17, SRS 97 1
A

dgeme

! (61 To pradict imagas:
Image ¥ ofeyer

ssing it oandideral
e

gere

i [T

P st ieihong Gu, (020) | AM-cBAN: Frsics
Augrent=lion 1o Predicting Transient Thermal
ubmites 10 MSE Transschions Undar wvicn.

Shenghan Guo. ink;
G2 Daep-Leaming-Bssed |7
Sigratunss in Addiivs Manufactn




STUDENT
PARTICIPANT

CURRENT AFFILIATION
Ph.D. Candidate

Industrial and Systems
Engineering

Georgia Institute of
Technology

On Job Market

ADVISOR

Dr. Kamran Paynabar

informs, QUALITY, STATISTICS & RELIABILITY

ANA MARIA ESTRADA GOMEZ

INTRODUCTION

My research interests lie in developing efficient methodologies and
algorithms for modeling and monitoring sensing systems with high-
dimensional data, using statistics and machine learning tools. | focus
on addressing analytical, computational, and scalability challenges
associated with the study of interconnected systems with complex
data structures. The methods | have developed have been applied
in the manufacturing, service, and healthcare sectors.

| am passionate about teaching. My main goal is to have a positive
impact on students’ lives. | want them to learn how to use analytical
tools and quantitative thinking for decision making.

| was recently appointed as a LATinE Fellow by Purdue’s College of
Engineering, and | have been selected as a Graduate Teaching Fellow
at Georgia Tech for two consecutive years.
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An Adaptive Sampling Strategy for Online Monitoring

and Diagnosis of High-dimensional Streaming Data
Ana Maria Estrada Gémez, Dan Li, Kamran Paynabar

+ Complex systems are continucusly
menitored by hundreds of sensors that
provide a variety of streaming data.

- Monitoring such high-dimensional (HD}
streaming data, in real-time, is critical to
detect anomalies and system failures.

ki

.1,

Environmental monitoring
Energy constraints
£

Spatial monitoring
Equipment constraints

Monitoring of streaming images
Processing & transmission constraints

* Incomplete data

* Spatial and temporal correlation
+ Non-stationary data

+ High-dimensional data streams

Develop an adaptive sampling strategy
for realtime monitoring and diagnosis
for ince lete and non-stationary HD
streaming data.

%fg;%. 3

* I x{ variables distributed on a grid
» Due to resource constraints, for each ¢,
only g data streams can be observed

Recursive Tensor Recovery

Ressarch questions:

How to adaptively select observed

variables at each time ¢?

- How to use the incomplete data to
quickly detect a system change?

+ How to determine where the system
change occurred?

Sensor Step 1: Low-rank
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Compenent Factorization &  Component Soft-

1 Manitoring
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Sequential samples

We developed a tensor sequential
sampling algorithm for online
itoring and  di is of HD

streaming data.
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ARVIND KRISHNA
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INTRODUCTION

| am interested in applied research in the field of data science and
machine learning. | have developed novel statistical methods for big
data reduction and big data exploration. | have also worked on
experimental design problems to maximize information gain from
small, but expensive data. My paper on ‘Robust experimental
designs for model calibration’ is under review in the Journal of
Quality Technology. In my INFORMS talk, | will present a method
to generate a space-filling design, without knowing the boundaries
of the domain space.

| love teaching, and try novel ways to make the courses exciting and
stimulate student interest. | taught an introductory course on
Probability and Statistics (ISyE 3770) to undergraduates in summer
2020. | used everyday examples to explain statistical concepts. My
students, and the Georgia Tech faculty appreciated my efforts in
ensuring high class engagement, despite the online teaching
environment due to COVID-19.



Adaptive Exploration & Optimization of Crystal Stuctures
Aruind Krishna', Huan Tran', V. Roshan Joseph®, Rampi Ramprasad!
H. Miltan Stawart Scheol of Industrial and Svstems Fnginesring® ; Schoal of Material Seience and Frginesring!, Geergia Ingtituts of Technology
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cllve Adaptive cryetal structue space exploration: Algoritls
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LUIS JAVIER SEGURA

INTRODUCTION

Luis Javier Segura’s research interest focuses on high-dimensional
data-driven quality control in inkjet 3D printing (1JP). In his first two-
year of Ph.D., he has been working on the |JP from (1) online change
detection of droplet jetting, (2) spatial-temporal dynamics learning
and forecasting of droplet evolution, to (3) tensor response physical
model emulation of solidification, to systematically investigate and
guarantee the IJP process quality. He has published in total 3 journal
papers in Additive Manufacturing, ASME ]CISE, etc, and 4
conference papers in MSEC, etc. He was a recipient of Fulbright
Scholarship, UB presidential fellowship, first place of UB ISE poster
competition, and honorable mention of UB ISE researcher of the
year.
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Unsupervised Learning for the Droplet Evolution Prediction and Process

'(é University
at Buffalo

Dynamics Understanding in Inkjet Printing
Jida Huang®, Luis Javier SeguraP, Tianjiao Wang?, Guanglei Zhao?, Hongyue Sun?, and Chi Zhou?
“Department of Mechanical and Industrial Engineering, University of Illinois at Chicago

UNIVERSITY OF
ILLINOIS CHICAGO

"Department of Industrial and Systems Engineering, University at Buffalo

I. Motivation, Objective, and Approach

o

Vo
H |

1 (a) Inikjet Printing Process (1P and {by 1P Draplet Behaviors

Motivation

« In the inkjet printing (LIP) process (Fig. 1 (), the fluid flow pattern (F
1 (b)) governs the draplet evolution behavior and its quality:

* Capturing the spatio-temporal relationships of the various droplet
evolution behaviors is critical to the process monitoring and control.

leos capture these relationships and are difficult to label.

Objective

= To propose an unsupervised Teaming method to study the flow pattem of
the draplet evelution from unlabeled 1IP videos.

Challenges

+ How Lo learn the spatio-lemporal relationships from the 1P videos.

+ How o deal with the unlabeled data and lesm the process dynamics

Approach

+ We implement a deep recurrent newral networl (DRNN) to leam the
latent representation and infer the forming stimulus of the droplets.

State-of:

In-situ Monitoring in ILJP

» IR, accelerometer. ete. have been used (Rao et al., 2015, etc.).

* Machine vision systems via cameras (Wang ez al., 2019, ete.).
Machine Learning Mcthods for Process Monitoring in AM
* Supervised: anomaly detection via CNN (Scieme er al.. 2018).

= Semi-supervised: defect classification via SVD (Okaro ef al., 201%).
* Unsupervised: it is limmited in the literatore (Stetea ef af, 2019j

-Art

lll. Methodology

Framewaork for the Process Vi

Twsuporvised Learning W
s pren

Video Dito [==0i | uprassmtations

| (Tatent S Deevding @

===

Fig. 2: Schematic Diagram of the Propascd Mcthod

Pencess Dynamics Understanding ‘

Methodology

Data Collection (Synthetic datay
= The Navier-Stokes equations govern the mass and  momentum
conservation for the liquid-gas interfuce (Fig, 3 (a)).
Mass conservation F-u=0
Mormentum conservation [?T:* (u -V)'u] =Vo+[

Data Collection (Experimental data)

= The hardware of the video collection system is shown in Fig. 3 (b), and

the video resolution is 640 % 480 pixels
®)

@)

Fle. 3: {a) Simulated Data and () LP Serap and Experimental Data
Unsupervised Learning
* HI: with a DRNN, a latent representation of the videos can be leamed
and predictions cun be made (Fig. 2 (b))
+ PredNet (Lotier ef al., 2016) 18 used 1 implement the DRNN (Fig. 4).
Latent Space Decoding
* H2: the lenmedd representation can be related to the droplet evolution
stimulus parameters and supports dynamics understanding (Fig. 2 (c)).
+ Sumulus parameters can be material properties {(e.g.. viscosity) and
procfss settings (e.g., back-pressure).
)

-
Fig. 4: (a) Predietive Coding Network (PredNet) and (b) Module Operations for Videos

IV. Experimental Results

Protocol
+ 1P simwmlated (1800 videos) and experimental (4500 videos) data were
collected (Fig. (3)).
Theee parameters (Table 1) that affeet the droplet evolution were
investigated for the simulated data.
For the DRNN, the number of layers were set to L =4 and £
simulated and experimental data, respectively

Table 1: Ranges of the Solution/Ink for Video Generation

5 for

Material Properties Low Level High Level
Density (/) 300 000
Viscosity (“¥/m.s) 0.0003 015
Surface Tension (V" cm) 50 30

Experimental Results
+ The filter size was setas 3 X 3 and max-pooling stride ar 2
The number of filters for R' and 1" are both set as (3,48,96, 192) for the
simulated data and (1, 32, 64, 128, 256) for the experimental data
Prediction model accuracy was assessed via Mean Square Crror (MSE)
and structure similarity index measure (SIMM) (Figs. 3 (a-c)).
* The latent decod performance was computed for ditferent layer
weight-seenarios (Fig. 5 (d)),
The results for simulated and experimental videos are shown in Fig. 5.
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Fig. 5; () Simulated Ong-step Ahead Prediction, (b) Experimental One-step Ahead

Prediction, (¢) VISE Compurisen of Multisiep Prediclivns, and (d) Det

V. Conclusions and Future Work

Conclusions

«+ The droplet flow paten and underlying dynamics are studied vin an
unsupervised learning Frumework

+ The framework successflly prediets the droplet behaviors and decodes

fing Accuricy

the forming stimulus parameters
Future Work
+ Ulilize the Tearned features Tor process paramelers adjustment,
-time monitoring and control of LIP.

+ Deploy the proposed framework in real
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* Sieteo ef wl, (2019). Machine learning methods for wind tucbine condition menitoring.

areview, Renew. Encegy 620 633

Huang er al.. (2020}, Unsupervised Leaming for the Droplet Evelution Prediction and

Provess Dynamics Understanding in Inkjet Printing. Adfdicive Mannfacturing, 101197,

« Tatter o af, (2016} Deep predictive coding networks for video prediction and
unsupervised learming. acXiv preprint arXiv:1605 08104,
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INTRODUCTION

My research consists on quality engineering and stochastic process.
| am interested in learning and applying knowledge from operations
research and statistics to question and challenge fundamental
assumptions in quality and operations engineering in order to
improve manufacturing processes.

I am currently working on the research of double tolerance design
in stochastic production environment. It is the first to introduce the
concept of double tolerance sets to the tolerance design
optimization literature. By comparing with a traditional single
tolerance model, the model with double tolerance schemes is more
cost-effective and can be used to decide when to rework or scrap
a product in the process. | am also interested in using the double
tolerance schemes to solve refurbishing problems which will be
presented in Informs Annual Conference 2020.
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DOUBLETOLERANCE DESIGN FOR
MANUFACTURING SYSTEMS I CLEMSON

D1 Liu, TUGCE IsIK, B. RAE CHO, CLEMSON UNIVERSITY

PROBLEM CRIPTION METHODS

A nonlinear optimization model is developed for

£ INDUSTRIAL ENGINEERING

Tolerance design techniques are widely used for —
€ ! s ey use Preduction Process ——— e ] RS g .
manufacturing processes. It is the first to intro- r = -‘uﬂwmm Customers determining tolerance sets (A; and As) to maxi-
duce the concept of double tolerance sets to the | N i’tﬁ‘ mize the long-run average net profit (y).
st smeist % T

s E ; Snen i
paring with a traditional single tolerance model, imn B

tolerance design optimization literature. By com- A Quece — P E 3
gn op 2 o = Svend We incorporate the following features into com-
cessing) e Inspection * o= (Rework) < Inspection . P .
7 Z i *u a2 prehensive tolerance optimization models:
the model with double tolerance schemes is more

P netst oemsunt,

cost-effective and can be used to decide when to @ the double tolerance system
rework or scrap a product in the process. «m»:o«w Produtts to @ uncertainty in the production system
m be srapped ss distributions
. @ truncated process distributions
Keywords: Quality control; Double tolerance; x S A e
T . @ imperfect reworking
Rework queue; General service times; Nonlin-
 ear programming. “ Figure 1: System boundaries of double tolerance optimization L
SINGLE TOLERANC 5. RESULTS
Tolerance is defined as the permissible distance from the lower specification limit to the upper specifi- | | We investigate the concavity of the objective func-  gle and double tolerance models is summarized in
cation limit in the measured value of the quality characteristic. tion for both double and single tolerance models. ~ Table 1.

Table 1: Example computational results

Double tolerance model  Single tolerance model
2.1 ar 09

I

4

) Onsfecnlo B Revorking ) 3 Coateeming W Revking ‘ |
W Nosconforsing I Scapping B Noocioming B Scoppes | ‘ ar 1 =1.077, A5 =2.201
. eyl U §;
T T i/ \ v
s : i <8/ )l alls  SE
N\ et . ] P
s # & T et e
= 2,3 4 sih 3 .
plots
VAR @ ®) e
I3 IS5 LSk . T o e Ol g b Figure 4: (a) 3d plot and (b) contour plot of y for the In addition, we run an extensive sensitivity anal-
- S — double tolerance model in the example velbrand w(’*nmine the: Sinpack F sl sursas:
Figure 2: Single tolerance models igure 3: Double tolerance models ) yeiasan 8 pa axing as
For the double tolerance model, there exista max-  sumptions. The results show that the double tol-

imum y with optimal tolerances and a limitof yas  erance model could outperform the single toler-
the tolerances tend to infinity ance model in terms of profits, and be more cost-
\Results of a numerical example comparing the sin-  effective in a variety of settings.

We refer to the models with only one tolerance set as the single tolerance models (see Fig. 2).
We investigate the double-tolerance models (see Fig. 3) with inner and outer tolerance
There are 3 possible product classifications:

@ conforming products
@ nonconforming products to be reworked 6. CONTRIBUTIONS

@ nonconforming products to be scrapped The main contribution of this study is three-fold:

Setting outer tolerances to separate the nonconforming products into two groups can be cost-effective. @ The double tolerance scheme with triple product classification is introduced.
@ The traditional tolerance design problem is extended to account for stochastic environments.
@ The actual truncated distribution for conforming products is used.

CONTACT INFORMATION

[1)°S'Shinand B K'Cho. 'Integrating'u bi:objective @ Remanufacturing Process Design using Double Tolerance Schemes

paradigm to tolerance optimization. International i .  Dogion f 2 <
Journal of Production Research, 45(23):5500- ® Double Tolerance Design for A Product Family

\__ 2007.
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INTRODUCTION

My research interests are in the areas of quality engineering,
machine learning, and statistics. | am especially interested in (1)
System degradation modeling and prognostics, (2) Bayesian deep
learning including Gaussian processes and Bayesian neural
networks, and (3) Hybrid prognostic approaches integrating domain
knowledge-based and data-driven methods.

My research has focused primarily on advanced manufacturing and
healthcare. I'm currently studying new methodologies to open an
entire field of novel applications for degradation modeling and
prognostics, ranging from materials in nuclear applications to
general soft matter systems.
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1. Background 5. Methodology

State-of-art Neural network-based prognostic methods

= Monotonic relationship;
Approaches failure (Remaining Lifetime decreases)
=» Degradation uncertainty decreases

Mu) . MM-MMM"/

Time Time
* Model Uncertainty
- Bayesian Inference + Neural Network
pwip) - L)
p(W)
- Predict failure time y* for new signal x*
p(y1x) = [p(y|x", W)p(W|D)dW
— Challenge: exact Bayesian inference is computationally
intractable
= MC Dropout: approximate p(W|D) with variational
distribution g(W)

= Interval Estimation of System Failure Time
— Estimate g(y*|x*) using R Monte Carlo samples:
R

R
1 P N
Earwr0™) = 3 0 POl W) =2 f7 )
r=1

Second moment

e

-
I

I
L
Focus: Types of networks & Design of outputs
Flexibility & High prognostic accuracy

Signal
Signal

2. Research Gap
Purely data-driven providing only point estimations of

failure time
=» Lack of interpretability & Wrong decision-making
— “"How reliable is this failure time prediction?”
- “Do we need more data?”
- "Do we need to be more cautious when making risk
analysis or maintenance decision?”

3. Objective

To establish the first variational Bayesian framework

enhancing interpretability and practicality of neural

network prognostic models by

* Uncertainty quantifications of failure time prediction

= Considering characteristics of degradation processes
— Stochasticity, data limitedness, etc.

4. Two types of Uncertainty in Prognostics

Estimate failure time y based on degradation signals x

r=1
First moment

= R W, (po\ 2
Vargy (v = 82 +%Z (J‘Wr(x*))2 - (Er=1 fR (x ))
r=1

» Degradation Uncertainty .
* Turbofan Aircraft Engine

y=f"(x) +e, e~N(0,0%)
Degradation | |Uncertainty from stochastic nature of Estimated degradation Estimated model uncertainty
Uncertainty degradation process captured by o2 uncertainty (sample variance)

* system-to-system variability
+signal measurement error

I Model Uncertainty HUncerta'mty in parameter W
= limited data availability
*new type of systems in test set — unusual x

and prognaostics
— General characteristics of degradation processes
— Variational Bayesian inference

A Variational Bayesian Neural Network Framework for
Interval Estimation of System Failure Time

Department of Industrial and Systems Engineering, University of Wisconsin-Madison
6. Application

f: Bayesian LSTM

= 21 Sensors

= 3 Environmental variables
= 6 Environmental conditions
= 2 Failure modes

= 248 Training & 248 Testing engines

L

= Failure Time prediction error (RMSE)
Proposed  LSTM DCNN  MODBNE HI
19.41 29.78 29.16 28.66 75.78

One bar = one testing system

8

0 25 50 ki 100 125 150 175 200
True Remaining Lifetime

Estimated Remaining Lifetime
g

« Li-ion battery

= 3 Sensors
= 3 Training & 1 Testing battery
)_.H =8 Truc
% .L —»— Estimated mean
i W Estimated uncertainty(2s1d)
g m Estimated uncertainty( 1sid)
E.
g
£
s
g
&

Time

* Modeling two types of uncertainties in degradation modeling

* Wide applicability

* Robust to overfitting

* Probabilistic interpretability
* High accuracy
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INTRODUCTION

My research area includes machine learning with special focus on
Gaussian process, sequential design, uncertainty quantification and
non-linear dynamic systems.



Absiract

Stochastic kriging (SK) offers an explicit way to
characterize heterogeneous noise variance in stochastic
computer simulations and has gained considerable
traction recently as a surrogate model, Nevertheless,
SK relies on tedious Monte Carlo (MCY method o
estimate the intrinsic variance at each design input. For

p pensi the
replication  effort  has  essenually rendered SK
intractable. To this end. we develop generalized
polynomial chaos (GPC)-informed efficient stochastic
kriging (GPC-SK) 1o ameliorate the computational
cosl. ALl eore, GPC supplants the tedious repetitive
MO simulations, instead resting on a mueh smaller sct
of sampling poinis o estimate the intrinsic uncertainty,
thus applicable to those prohibitively expensive
simulations.

Tnitr

u

QSK extends the conventional kriging model to
delineate the response surface in stochastic
simulation
% the output of /™ replication of the simulation

Yylxd = Y] + ()
¥ g: the sampling noise that £ ~ N(0,V{x]]
 V: the intrinsic uncertainty
* ¥ the true mean ai
Q'Y is regarded as the universal kriging
Y0} = f{x)"B + M(x)
> f(x)" B captures the trend with f(x) a set of pre-
defined basis
> M(x):R? = R is a second-order stationary zero-
mean Gaussian random field

O Assumptions

# The random ficld M, which caplures the cxtrinsic
uneertainty or the random variation of the response
surface around the trend, is a zero-mean stationary
Gaussian random field.

v

£ (%), £,(%), ... follows identical and independent
distribution N (0, v(x;)) and captures the intringie
uncertainty. They are also independent of & {x,) for
all j and & # i and independent af M.

Q The mean response

3 ey = v + )
]
O The linear predictor
= Tlg) = Aolxe) + A0xe) Y
2
» Minimize MSE [(Y{xn) l?(x.,))]

= dp = f(x0)" B — T Ln{f(x0)"B)
P = (R B T Ry (x, X)

informs, QUALITY, STATISTICS & RELIABILITY

Polynomial Chaos-informed Efficient Stochastic Kriging

Yiming Che, Zigi Guo and Changqing Cheng

Department of cms

ate University of New

Budyet of SK
O Estimation of intrinsic variance V

P = 23 (Wt - Ye)

% 1y simulations are required for cach design point x
5y is usually larpe!
# Not affordable for large-scale or expensive-to-
evaluate stochastic systems
GPC-SK
O How to save simulation budget?
¥ We place anather surrogate mode] for U, (x)
Ypx) = ¥ ) + g (x)
# e;(%): the bias
# ¥“(x): the GPC surrogate model

# Usually needs a small number of simulation budget
Tor filling
QO GPC surrogate model

Y=bate
a=argmin|[y - opel,
% ny simulations for fitting at each design point x
# 1y is usually much smaller
O Estimation of the bias
* bias e () ~N (), V(x))
¥ €(x) not necessary to be zero-mean
% Leave-one-out technigque
» Almost unbiased estimation
UThe mean response

P = ) H) = V) 4 () — )
.

% After GPC is built, do another n, simulations in
GPC surrogate model
* n, is usually very large
» Why? Eliminate sampling uncertainty
U The linear predictor
» PRxg) = Agag) + ) PP
* Minimize MSE Mv(x[.l - V(xf.))‘l
FPexg) = Flxp)T B + Ly (0, X7 [Z +
ARG GRS T o)
MSE (77 (x0)) = 245 (0, %) — Zuae, X0V [y 4
2ol e, X)
Q One more assumption
P ey (xy), €2(x), .. ave iid N (x), V()
independent of e;(x) for all j and / # £, and
independent of M and &
O FEstimation of bias mean and variance is the
key part of GPC-SK

» It directly alfeets the predictor F¥€(xg)

cience and Industrial Engineering

rk at Binghamton, Binghamton NY 13902

¢ Tainega
(LT NS,

timremeshz, Adiicra g a1,
« largle hy By B
+ smaterisoonse Y n B0 Yirom)
o
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L0 estmator

dration oy

Figure 1 Flowchart of GPC-SK
Case Study: Stability Identification of Time-delay
Dynamic

B covaranes
M)

QO Characterize the vibration in the feed direction

e — E o mom ww

s Irouschnis] B N el

Figure 2 GPC-SK sequential optimal dasign

viaa d-order delay differential eq

F()+ 2, 200+ wiz(t) = =Tl - 2(8) + 20t = 1))
State variable z denotes the tool displacement in feed
direction during vibration

Uncertainty exists in the process parameters

= Natural frequency w, ~ N(600m, (37)%)(1z)

= Damping ratio {~N{(0.02,0.01)

= Force cocffivient K ~ N(2 % 107, 10%) i /im*

The design variable x, [,
The time delay 7 is expl

-

-

s the nominal feed rate
tly determined by another design

v v

variabl

the spindle speed x,, a5 T =
O Target: detect the boundary that separate
stable and unstable cutting area
# Bused on TFEM method with Hormile basis
functions. It can be rewrillen in a compact matrix
formm

Na" = Pa™' +Q
# Stability is determined by the eigenvalue of 6 =
NP

# Ag < 1 for stable area
# Henee, find the contour that 1

O'Why Sequential Design?

# In many real-world cases, the quantity of interest is
only a certsin level of response value instead of all
of them.

¥ Very slow to explore all the design space

QOThe design is based on the classic trade-off
between exploration and exploitation, which
strive for the local accuracy not global
accuracy

UG |X) = maze(0,8 — |y, = PPe(a)])

-

i sty = 1 eondmin &

Figure 3 SK sequential optimal design

OWhy SK doesn’t fit as well as GPC-S|
# Lack of replications
* Large intrinsic variance |
= Too smooth
» Tnaccurate estimation of responses
misguided exploration of sequential design
# Improve?
* Increase simulation budget
* Hence, using GP'C-SK is a better choice!
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INTRODUCTION

My research interest is design and analysis of rocket performance
using statistical methods.
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Piseevering ¢the Beyeonds
A Pegign and Analysis of MHergan State University’s Liguid

Reeket¢ (LPR)

Jingwen Xue'#, Marc J Louise Caballes’ 3, Margaret Ajuwon'#, Samuel Oludayo Alamu'-®and Guangming Chen?3
1Graduate Student, 2Professor, *Department of Industrial and Systems Engineering, *Department of Civil Engineering

bilityApproach

Background

+ Morgan State University (MSU) received a grant award last
year from BASE 11 to build and launch a Liquid Propellant
Racket (LPR) and develop the first Aerospace and Rocketry
Program (ARP) at an HBCU.

+ Designing and printing 3D-Models before the actual fabrication
of the rocket allows students and staffs to create high-quality
prototypes, run simulations, and efficiently identify errors in both
dimensions and designs.

+ Reliability and validity plays a vital role for consistency and

accuracy of the experiment during the design and simulation
phase of the rocket

e MoricsBay | |Drgue  polani ek v1&82 |

Barachute —r Parachute "—’7 f
- + TTTT
< IF T

ResearchiObjectiyvEes

+ To design and model the necessary components of the external
and internal parts of the rocket

+ To check the consistency and effectiveness of the designed LPR
when placed under the same environment and circumstances
during simulation.

+ To analyze how the factors (e.g., airframe length, propellant
tanks size, and material density) affects the LPR's performance.

Weight

Thrust

DesigniRelia

T R PR
Analysis of Variance

ResultsiandiDisCusSioni

o
00

‘Surface Plot of Apoges vz Nase Cone Length, Shape

peen =
o o

e

< From the simulated result, the highest apogee of 17,975ft was
achieved at LPR nose cone of 35 inches, 88 inches airframe
length, 15 inches propellant tanks, and carbon fiber material.

+ Analysis of Variance (ANOVA) results showed both material
density, airframe length and propellant tank size are significant
factors on apogee as well as the height of the nose cone.

+# Reliability analysis method was applied in product development process (design
and modeling pracess of the LPR),

4 Design for reliability approach is used lo analyze and determine the major inner
(e.g.. GPS, DAQ) and outer companents (e.g., nose cone, airframe).

4 Simulation analysis and the factarial design were performed to get the best
design sefling of malerial selection, and 1o assure the mission reliability achieve
the design requirement of at least 13,000 feet of the LPR apogee

References,

1. Newtan. M. {2014 Rockat Anatomy 101. Rocketry Basics.
2. Nilsen, C.. Maysr, S., & Meriam, S. (2019). Purtus Liquid Oxygen-Liquid Iethans Sounding
Rocket. In AIAA Scitech 2019 Forum (p. 06141,
3, Wang, Z. G. (2016). Internal combustion processes of liquid rocket engines; modeling and
mulations. John Wiy & Sons
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INTRODUCTION

I am one of the Project Leads of the Base || Rocketry at Morgan
State University, where the team and | design and fabricate the first-
ever university rocket at MSU. Aside from that, the research area
that | am interested in is utilizing Mixed Reality (MR) technologies,
including Virtual Reality and Augmented Reality, in any field —
Industry or Academia. Additionally, | want to uncover its limitations
and improve it by taking it beyond its capabilities.

Furthermore, | believe that if MR is used correctly, it can drastically
improve present educational and training opportunities that are not
possible with traditional instruction methods and other mediums,
like online videos. MR allows users to experience high-fidelity
environments and situations that would ordinarily be dangerous to
learn. As we adapt to the new norm right now that is brought by
this pandemic, the usage of MR will not deteriorate the learning
experience of students even if everything is virtual.
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INTRODUCTION

I am fascinated by Engineering optimization models and applying
them to various problems in different stages of complex multi-
echelon supply chain.
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INTRODUCTION

My research interest focuses on Process Control and Dynamics,
Process Design and Optimization, Big data analysis using Al tools
among others, for manufacturing processes. | have led a team of
students to develop a feedback control system for our lab-scale
fluidized bed combustion system using Programmable Logic
Controller (PLC). | have conducted some research works on
converting high volume waste (biomass) to energy using both
Biochemical and Thermochemical processes. For the rocketry
program at Morgan, my team is currently working on developing a
Data Acquisition System (DAQ) for the onboard system. | have
presented my research works at several international conferences
within and outside the USA.

21
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