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Abstract. Activation functions in deep learning are an active research
area. They play a critical role in making deep learning networks nonlinear
to solve complex problem. Despite some past research, activations devel-
opment is still at its nascent stage. Activation functions are required to
have certain properties such as a saturation region, non-linearity, and a
non-decaying or exploding gradient. A few additional desired properties
are normalization and regularization. Novel activations with these prop-
erties as well as with new unidentified special properties can be devel-
oped. A new developed activation need not be effective on every problem.
Instead, its superiority on a specific type of problem is a major research
contribution. This data challenge is aimed to motivate researchers to
work in this direction to advance the field of deep learning.
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1 Story of Activation Functions

Activation functions are one of the primary drivers of neural networks. It in-
troduces non-linear properties to a network. In some cases, a network without
activation is equivalent to a simple regression model. It is the non-linearity of the
activations that make a neural network capable of learning non-linear patterns
in complex problems.

There are a variety of activations, e.g., tanh, elu, relu, etc. If appropri-
ately chosen, an activation can significantly improve a model. An appropriate
activation is the one that does not have vanishing and/or exploding gradient
issues.

In fact, the vanishing and exploding gradient issues became a bottleneck in
developing complex and large neural networks. They were first resolved to some
extent with the rectified linear unit (relu) and leaky-relu in Maas et al. (2013).

Relu activation is defined as,

g(x) =

{
x, if x > 0

0, otherwise
(1)
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The gradient of relu is 1 if x > 0 and 0 otherwise. Therefore, when a
relu unit is “activated,” i.e., the input in it is anything greater than zero, its
derivative is 1. Due to this, the gradient vanishment does not happen for
the positive-valued units in an arbitrarily deep network. These units are called
active units.

Additionally, relu is nonlinear at x = 0 with a saturation region for x < 0. A
saturation region is where the gradient is zero. The saturation region dampens
the activation variance if it is too large in the lower layers. This helps in learning
lower level features, e.g., more abstract distinguishing patterns in a classifier.

However, only one saturation region1 is desirable. More than one saturation
region, like in tanh (it has two saturation region shown in Figure 1b), make the
variance too small causing gradients vanishment.

Theoretically, relu resolved the vanishing gradient issue. Still, researchers
were skeptical about relu because without any negative outputs the relu acti-
vations’ means (averages) are difficult to control. Their means can easily stray
to large values.

Additionally, relu’s gradient is zero whenever the unit is inactive. This was
believed to be restrictive because the gradient-based backpropagation does not
adjust the weights of units that never activate initially and, eventually, causing
cases where a unit never activates.

To alleviate this, the relu authors further developed leaky-relu. Unlike
relu, it has a scaled-down output, 0.01x when x < 0. The activations are visu-
alized for comparison in Figure 1a.

As seen in the figure, the leaky-relu has a small but non-zero output for
x < 0. But this yields a non-zero gradient for every input. That is, it has no
saturation region. This did not work in favor of leaky-relu.

To resolve the issues in relu and leaky-relu, elu was developed in Clevert
et al. (2015). The elu activation is defined as,

g(x) =

{
x, if x > 0

α(expx− 1), otherwise.
(2)

Elu’s gradient is visualized in Figure 1b. In contrast to the leaky-relu,
elu has a saturation in the negative region. As mentioned before, the satura-
tion results in small derivatives which decrease the variance and, therefore, the
information is well-propagated to the next layer.

With this property and the non-zero negative outputs, elu could enable
faster learning as they bring the gradient closer to the natural gradient (shown
in Clevert et al. (2015)). However, despite the claims by elu or leaky-relu,
they did not become as popular as relu. Relu’s robustness made it a default
activation for most models.

In any case, relu and other activations developed thus far could not address
the gradient explosion issue. Batch normalization, a computation outside of ac-

1 A saturation region where the gradient is zero.
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Fig. 1: Activations functions. The top chart compares the shape of activations

g(x) and the bottom compares their gradients
∂g(x)

∂x
.

Source: Understanding Deep Learning by Chitta Ranjan Ranjan (2020).
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tivation done in a BatchNormalization layer, was typically used to address it.
Until Scaled Exponential Linear Unit (selu) was developed in Klambauer et al.
(2017).

Selu can construct a self-normalizing neural network. This addresses both
the vanishing and exploding gradient issues at the same time.

A selu activation, shown in Equation 3 below, appears to be a minor change
in elu in Equation 2 with a λ factor.

g(x) =

{
λx, if x > 0

λα(expx− 1), otherwise
(3)

where, λ > 1.
But Klambauer et al. (2017) proved that the simple change brought an im-

portant property of self-normalization that none of the predecessors had.
The development of selu in Klambauer et al. (2017) outlines the desired

properties of an activation. Among them, the presence of negative and positive
values, and a (one) saturation region are the priorities. Figure 1a and 1b display
the presence/absence of these properties among the popular activations. Only
elu and selu have both the properties. However, selu went beyond elu with
two additional attributes,

• Larger gradient. A gradient larger than one. This increases the variance if
it is too small in the lower layers. This would make learning low-level features
in deeper networks possible.
Moreover, the gradient is larger around x = 0 compared to elu (see Fig-
ure 1b). This reduces the noise from weaker nodes and guides them to their
optimal values faster.

• Balanced variance. A fixed point where the variance damping (due to the
gradient saturation) is equalized by variance inflation (due to greater than
1 gradient). This controls the activations from vanishing or exploding.

2 Research Problem

2.1 Background

The story of activations is told above to inspire the development of novel acti-
vations. The essential properties learned from the past activation research are,

1. Non-linearity. It makes a network nonlinear to solve complex problems.

2. Gradient. A region where the activation gradient is ≥ 1 and < 1 + δ, where
δ is small, to avoid gradient vanishment and explosion, respectively.

3. Saturation region. A region where the gradient becomes 0 to reduce vari-
ance.

Additional desired properties are,

1. Normalization, and

2. Regularization.
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2.2 Problem Statement

Develop a novel activation function which has a better efficacy on at least one
type of problem, such as object detection, time series, speech translation, etc.

2.3 Example

An example for a novel activation development and implementation is taken
from Section 4.8 in Ranjan (2020).

Here a new activation, Thresholded Exponential Linear Unit (telu), is de-
fined as,

g(x) =


λx, if x > τ

0, if − τ ≤ x ≤ τ

λα(expx− 1), if x < −τ
. (4)

In this activation, weak nodes smaller than τ will be deactivated. The idea
behind thresholding small activations is applying regularization directly through
the telu activation function. Regularization is another desired property men-
tioned in § 2.1.

Section 4.8 in the UDL book Ranjan (2020) shows an implementation using
TensorFlow in Python.

3 Manuscript Outline for Submission

A submission should be a manuscript submitted or ready to submit to IISE
proceedings, or a relevant conference/journal. It is also recommended to post
the manuscript on Arxiv. The manuscript should follow the author guidelines of
the intended proceedings/journal.

The manuscript should contain the following sections. Authors can rename
the below mentioned sections but ensure that they contain the recommended
topics.

• Abstract

• Introduction
◦ High level description of the proposed activation.

◦ Application area, e.g., speech analysis.

◦ Research contribution.

• Proposed Activation
◦ Activation function

◦ Theoretical properties

• Experimental Validation
◦ Validate its performance on synthesized data that corresponds to the

type of problem covered in the research.
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◦ Benchmark performance against other activations.

◦ Sensitivity analysis.

• Real Data Analysis
◦ Analysis results on real data sets. It is recommended to perform analysis

on a minimum of three real data sets. Analysis on five or more data
sets is preferred. The data sets can be public, proprietary, or both (e.g.,
if you are performing real data analysis on five data sets, all could be
public, proprietary, or some could be public and the rest proprietary).
For proprietary data sets, provide the source of the data, and describe
it in sufficient detail. For public data sets, a brief description and a
reference for the details is sufficient.

◦ Compare performance against other activations.

• Discussion
◦ Discuss the performance and sensitivity analysis in experimental valida-

tion.

◦ Discuss the real data analysis

• Conclusion

• Bibliography
◦ Cite Ranjan (2020) as it provides the motivation and background for

this research.

4 Deadline

The submission deadline is: April 29, 2022.
Submission can be made by sharing the arxiv link or manuscript pdf to:

• Dr. Yisha Xiang, yisha.xiang@ttu.edu, and
• Dr. Chitta Ranjan, cranjan@processminer.com.

Participants are encouraged to work in teams. The finalist teams will require to
present their work at the IISE annual conference, 2022.
Winners’ Prize:

• First Prize: $2,000
• Second Prize: $1,000

mailto:yisha.xiang@ttu.edu
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