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ABSTRACT: In business practice, Monte Carlo (MC) simulation is extensively used for many purposes like sensitivity
analysis, risk quantification and analysis, prediction etc. MC simulation creates many artificial futures for a given situation
by generating number of sample paths of outcomes. The process of simulation assumes importance in the context of our
inability to mathematically model the business process completely and also the flaw of averages (due to Savage). While
performing MC simulation, precision and error control are important and can be achieved by appropriate sampling.
Discussion will be on how best to use MC simulation in business applications with inputs from literature and the authors
work.
AMS (MOS) Subject Classification. 65C05

1 INTRODUCTION
There are many stories about the advent of Monte Carlo simulation. One story credits it to a scientist Stanislav Ulam
who got the idea while recuperating in his hospital bed. He took his idea to Von Neumann, who approved it and thus
sowed the seeds of Monte Carlo simulation in 1946. It is now almost 70 years after that and perhaps a right time to
review the progress made since then. In this talk, we discuss a few aspects of the theory behind Monte Carlo simulation,
some representative simulation applications, and a few simulation enablers.

Simulation refers to recreating or creating alternate scenarios of a situation based on certain inputs. For a practitioner,
simulation enables solving complex practical problems with sufficient ease. A simulation procedure usually calculates
various scenarios of a model by repeatedly picking up value from either historical data or a user-defined probability
distribution for the uncertain variables in the model.

2 MONTE CARLO SIMULATION
The basic building block of Monte Carlo simulation is a computerized version of a roulette wheel with many million
random numbers around its edge. Monte Carlo (MC) simulation is a method of parametric simulation, where we assume
specific parameters of a suitable probability distribution for the uncertain variables in the model. MC simulation was
central to the simulations required for the Manhattan project, and became popular in the fields of physics and operations
research. The procedure was described by David Hertz in a 1964 HBR article and popularized in financial circles by
sophisticated users. Today, spreadsheet-based Monte Carlo simulation software is widely available and is being used in
fields as diverse as petroleum exploration, financial engineering, defense, banking, and retirement portfolio planning.
MC simulation is a viable alternative to complex stochastic closed-form mathematical models. If correctly modeled,
MC simulation obtains similar answers to the more elegant mathematical models. Moreover, there are many com-
plex real-life situations where closed-form mathematical models are not available and MC simulation is the only recourse.

2.1 Random Numbers
In general, we generate random numbers, xs, that belong to some domain, x ∈ [xmin, xmax], in such a way that
the frequency of occurrence, or probability density, will depend upon the value of x in a prescribed functional form f
(x). Random numbers generated from standard uniform distribution are used in sampling from defined distributions.
While true (0, 1) random numbers can be generated only by electronic devices, simulation models executed on computer
use arithmetic operations and algorithms to generate pseudo- random numbers. Many programming languages have
the ability to generate pseudo-random numbers which are effectively distributed according to the standard uniform
distribution.

Several methods are available to transform the uniform random variate on the unit interval into another functional form.
Inverse transformation, one of the most common and easy-to-understand methods, involves describing the cumulative
distribution function F(x) associated with the function f(x) and generating the probability density function through the
inverse function F-1(x) for any value of uniform random variate U (0, 1). If such inversion is not feasible, we use
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other methods which include composition, convolution etc, statistical methods based on sampling, and methods based on
number theory. Specific methods are used to generate bivariate correlated distributions, by generating first independent
distributions and providing the desired correlation by rotation of the axes. Even truncated distributions can be generated
through an appropriate method which works well with the inverse transformation technique.

2.2 Probability Distributions
An assumed probability distribution or distributions is at the core of any MC simulation. Any probability distribution
is characterized by a probability density function and a few defined parameters. For example, a continuous uniform
distribution is characterized by the probability density function

f(x) =
1

b− a for a ≤ x ≤ b and = 0 for x > a or x > b. (1)

The continuous uniform distribution is a family of symmetric probability distributions such that for each member of the
family all intervals of the same length on the distributions support are equally probable. The support is defined by the
two parameters a and b its minimum and maximum values. A standard uniform distribution has a =0 and b=1. The
cumulative distribution function is

F (x) = 0 for x < a, =
x− a
b− a for a ≤ x < b, = 1 for x ≥ b. (2)

Its inverse is
F−1(p) = a+ p ∗ (b− a) for 0 < p < 1. (3)

Saucier (2000) provides a detailed exposition on generating statistical distributions in a C++ environment. This publi-
cation also highlights the overuse of the continuous normal distribution and the discrete Poisson distribution and provides
the required codes for using lesser-known distributions.

2.3 Distributional Fitting
While it is possible to run the simulation trials by assuming parameters of a certain population, it is more preferable
to make distributional assumptions correctly based on historical data. This is done by converting the raw data into a
histogram and comparing it with that of regular distributions. Based on the assumed distribution and its parameters, the
distributional fitting is performed through either a chi-square Goodness-of-fit test or a Kolmogorov-Smirnov test. While
the former is used to test discrete distributions, the latter is used for continuous distributions. The chi-square and K-S test
are semi-parametric and nonparametric in nature and are better suited for goodness-of-fit tests of non-normal and normal
distributions. There are other distributional tests like the Anderson-Darling, Shapiro- Wilks which are very sensitive
parametric tests. These may not be appropriate in MC simulation.

2.4 Chi-square test
The chi-square (CS) test is a goodness-of-fit test, which can be applied to any univariate distribution for which you can
calculate the cumulative distribution function. The test requires a sufficient sample size for the CS approximation to be
valid and is sensitive to the choice of bins. Also it can be applied to discrete distributions like binomial, Poisson etc. The
null hypothesis that the data set follows a specified distribution is tested using the CS statistic defined as

χ2 =

k∑
i=1

(Oi − Ei)
2

Ei
, (4)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i.The expected frequency is
calculated by

Ei = N(F (YU )− F (YL)) (5)

where F is the cumulative distribution function for the distribution being tested, Y (U ) is the upper limit for class i,
Y (L) is the lower limit for class i, and N is the sample size. The test statistic follows a CS distribution with (k-c)
degrees of freedom where k is the number of nonempty cells and c = the number of estimated parameters (including
location, scale, and shape parameters) for the distribution +1. For example for a two-parameter binomial distribution,
c=3.The hypothesis that the data are form a population with specified distribution is rejected, if χ2 > χ2(α, k− c) where
χ2(α, k − c) is the CS percent point function with k-c degrees of freedom and a significance level of α. A low p-value
indicates a bad fit (null hypothesis rejected) while a high p-value indicates a statistically good fit.
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2.5 Kolmogorov-Smirnov (K-S) test
The KolmogorovSmirnov statistic quantifies a distance between the empirical distribution function of the sample and
the cumulative distribution function of the reference distribution, or between the empirical distribution functions of two
samples. The test is nonparametric based on the empirical distribution function of the sample data set and the distribution
of the K-S test statistic does not depend on the underlying cumulative distribution function being tested. It only applies
to continuous distributions, and it tends to be more sensitive near the centre of the distribution than at the distributions
tails. We also need to specify the distribution fully.

The null distribution of this statistic is calculated under the null hypothesis that the samples are drawn from the same
distribution (in the two-sample case) or that the sample is drawn from the reference distribution (in the one-sample case).
Given N ordered data points Y1, Y2, ., Yn, the empirical distribution function is defined as En = n(i)/N where n(i) is
the number of points less than Yi where Yi values are ordered from the smallest to the largest value. The hypothesis is
tested using the K-S statistic defined as

KS = max1≤i≤N | F (Yi)−
i

N
|, (6)

where F is the theoretical cumulative distribution of the continuous distribution being tested. This distribution must be
fully specified (i.e. the location, scale, and shape parameters cannot be estimated from the data). A low p-value (e.g. less
than 0.05, 0.01) leads to rejection of null hypothesis and indicates a bad fit whereas a high p-value indicates a statistically
good fit.

2.6 Precision Control in Simulation
While a large number of trials are expected to produce reliable estimates with sufficient precision, we can carry out
precision control by following certain statistical sampling procedures. In order to remove subjectivity in estimating the
required number of trials, precision control is done using the confidence intervals to determine when a specified accuracy
of a statistic has been reached. If we have a 5 percent error level with respect to the mean at the 95 percent confidence
level, the number of trials required to obtain this precision is based on the following confidence interval of

X ± Z0.05
s√
n

where Z0.05
s√
n

is the error of 5 percent level, X is the sample average, Z is the standard-normal Z-score obtained

from 95 percent precision level, s is the sample standard deviation and n is the number of trials required to obtain this
level of error with the specified precision. Very large number of trials also involves expensive computer time, which
can be saved by adopting variance reduction procedures to reduce the variance and thereby reduce the number of trials.
These include antithetic variable technique, control-variate technique, importance sampling, stratified sampling, moment
matching etc.

2.7 Bootstrap Simulation
An alternative to MC simulation is nonparametric bootstrap simulation in which historical data is used and no distribu-
tional parameters are assumed. In essence, bootstrap simulation is an alternative to classical hypothesis testing methods
based on normal distribution of the sample statistic. Classical methods offer higher power in their tests, but relies on
normality assumptions and can be used only to test the mean and variance. Bootstrap simulation, on the other hand,
provides lower power but is nonparametric and distribution-free, and can be used to test any distributional statistic, like
skewness etc. Nonparametric simulation uses raw data directly and hence may require additional procedures of cleaning
the data (e.g. outliers and non-sensical values).

3 SIMULATION APPLICATIONS
3.1 Applications to Portfolio Optimization
Markowitz theory of portfolio selection (Markowitz, 1952) is an important contribution in the area of mathematical
finance for which he was awarded the nobel prize in 1990. His theory was based on three important principles: risk,
reward, and the correlation among the assets in the portfolio. While risk was measured by standard deviation, and
correlation by a measure called covariance, reward was measured by the mean, specifically arithmetic mean. In the recent
past, some limitations of the Markowitz model have been studied and some researchers have presented improvements
incorporating alternate concepts, primarily dependent on simulation.

The importance of simulation studies can be better understood also from a consideration of the ‘Flaw of Aver-
ages’(Savage, 2009) which simply states that plans based on assumptions about average conditions usually go wrong.
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Whenever we use an average to represent an uncertain quantity, we are distorting the results because an average measure
ignores the impact of the inevitable but possible variations. It is also true that the average of a function of many random
variables is not equal to the function of the averages of the same variables unless the function is linear. In the context of
flaw of Averages, even a nonparametric bootstrap simulation is quite useful.

Though the mean-variance portfolio model of Markowitz addresses the flaw of averages, associated with the mean by
distinguishing between different investments with the same average (expected) returns but with different risks (standard
deviation), Kaplan and Savage (2009) say the use of standard deviation and covariance introduces a higher-order version
of ‘flaw of averages’, in that these concepts are themselves a version of averages. They present an updated version of
their model “Markowitz 2.0”, addressing the several limitations of mean-variance optimization (MVO). Their updated
model focuses on five specific enhancements:

1). Use of a scenario-based approach to allow fat-tailed distributions, 2). Adoption of the long-term geometric mean
in place of the arithmetic mean, 3). Choice of Conditional Value at Risk (CVaR) in place of standard deviation, 4).
Scenario-based modelling with Monte-Carlo simulation to accommodate any number of distributions to describe the
returns and 5). Exploit new statistical technologies pioneered by Savage in the field of Probability Management.

With phenomenal speed of computers, the field of Probability Management is able to extend data management
to probability distributions rather than numbers. The key component of Probability Management is the Distribution
String, or DISTTM , which can encapsulate thousands of trials as a single data element. The use of DISTs greatly
saves on storage and speeds up processing time, so that a Monte Carlo simulation consisting of thousands of trials can
be performed on a personal computer in an instant. Kaplan and Savage (2009) say, “while not all asset-management
organizations are prepared to create the DISTs needed to drive the GM-CVaR optimization we described, some outside
vendors, such as Morningstar Ibbotson, can fulfill this role.”

Gulten and Ruszczvnski (2015) adopt novel risk modeling and optimization techniques to daily portfolio management
to develop and compare specialized methods for scenario generation and scenario tree construction. They also discuss a
two-stage stochastic programming problem with conditional measures of risk, which is used to re-balance the portfolio
on a rolling horizon basis, with transaction costs included in the model. Their results are supported by an extensive
simulation study on real-world data of several versions of the methodology, based on which they conclude that two-stage
models outperform single-stage models in terms of long-term performance and also that using high-order risk measures
is superior to first-order measures.

3.2 Applications to Option valuation
Applications in this area have been driven by the need to develop solutions in the context of mathematical complexity.
In the case of simple derivatives, like a European option, we have the Black-Scholes formula, based on assumptions of
geometric Brownian motion for the stock prices and other generalizing features. When exact formulas are not available,
different numerical procedures are used for valuing derivatives. MC simulation is one of the preferred and prominent
methods for valuing complex derivatives.

MC simulation is generally used for valuing derivatives where the payoff is dependent on the path of the underlying or
where there are many underlying variables. The main advantage of MC simulation is that we can use it when the payoff
depends on the path followed by S as well as when it depends only on the final value of S. Also, payoffs can occur any
number of times during the life of the derivative and any stochastic process can be accommodated. We can extend the pro-
cedure to deal with situations where there are many underlying variables. Though MC simulation can be computationally
time consuming and is not well suited for valuing American-style options, researchers have developed different ways to
adapt the procedure to handle them , using either a least-squares analysis or by parameterizing the early exercise boundary.

Black-Scholes model for valuing an option is found to be imperfect despite its prevalent use in hedging, as it assumes
continuous hedging and zero transaction cost. A specific application (Nilakantan and Talwar, 2014) was developed
by replacing the continuous hedging assumption with discrete hedging specified number of times a day. Results were
obtained by testing the model for European call options on 12 NIFTY-constituent stocks.

The replication strategy was studied by carrying out Monte Carlo simulations of the model and analysing the results
for the uncertainty in the replication error.Three scenarios: hedging once, twice, and four times a day were studied with
Monte Carlo simulation and the following conclusions were drawn. 1).The replication error (represented by final profit/
loss) is not zero, in the Indian market.The final distribution of replication error i.e. the final profit/loss is not normal, in
all the cases, as also verified with the K-S test. However, representing the risk of final profit/loss in terms of a standard
deviation of the distribution is quite useful. 2).The standard deviation obtained in simulations for once-a-day hedging is
different/ higher in all the options than the theoretical standard deviation (calculated from the options vega). However,
the obtained standard deviation reduces approximately for all stocks by

√
2 and 2, when the hedging is performed twice

and four times in a given trading day respectively. Thus the proportion of
√
N is maintained at both twice and four times
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a day hedging. It was possible for us to verify the relationship between σPandL at different hedging frequencies which
is proportional to

√
N .

3.3 Applications to Simulation-Optimization
Standard optimization methods assume the property of certainty for the parameters and uncertainty is normally dealt
with through stochastic programming. Simulation is a viable process that can be coupled with optimization procedures.
A simulation- optimization application was developed in the area of operations and logistics (Nilakantan, 2011) for
procurement and transportation of coal from different sources to the generation plants with extensions for dealing with
uncertainties associated with import delays and power factor variability. While variability and uncertainty dictated
the use of nonlinearity and stochastic programming methodology, the optimization was achieved by applying Monte
Carlo simulation in a combination of simulation-optimization on the Risksolver platform. A full-fledged simulation-
optimization of a power plant logistics system was earlier demonstrated by Yabin Li and Rong Li (2008).

Liu et al. (2013) discuss an application of simulation-optimization for inventory management at Kroger pharmacy
chain. Krogers operations research team, in collaboration with faculty from Wright State University, developed a
simulation-optimization approach using empirical distributions to model demand. The system was implemented in Oc-
tober 2011 in all Kroger pharmacies in the United States which not only reduced out-of-stocks substantially but also
resulted in increased revenue and reduced costs of inventory and labour.

4 SIMULATION ENABLERS
Though simulations can be set up in Excel and other spreadsheets, setting up spreadsheets for complex problems is diffi-
cult in many cases for which use of more sophisticated simulation packages is advised. Advanced simulation packages
are available to perform the simulation more efficiently and with additional features. Specialized software packages
are quite useful to deal with various aspects of the model and provide relevant results from the simulation runs. There
are many simulation languages like Arena, GPSS/SLX, SIMPLE++, SIMUL8 etc., which score over general-purpose
programming languages in terms of providing a natural framework, lower development cost, simulation-specific error
detection etc.

The Systems Modeling Language (SysML) is a general purpose visual modeling language for systems engineering
applications. SysML is defined as a dialect of the Unified Modeling Language (UML) standard, and supports the
specification, analysis, design, verification and validation of a broad range of systems and systems-of-systems. During
the last decade SysML has evolved into enabling technology for Model-Based Systems Engineering (MBSE) for
applying rigorous visual modeling principles and best practices to Systems Engineering activities throughout the System
Development Life Cycle (SDLC). According to Huang, Ramamurthy, and McGinnis (2007), “Simulation languages and
the GUIs supporting them may be excellent tools for creating simulation codes, but are not necessarily the best tools to
use for creating descriptions of systems, i.e. for modeling.”After using SysML both to model a system and to support the
automatic generation of simulation models, they conclude that “SysML shows great promise for creating object-oriented
models of systems that incorporate not only software, but also people, material, and other physical resources, expressing
both structure and behavior for such systems.”

QSIM from SAS Inc. is a G-P simulation package used for constructing and analyzing discrete-event simulation
models (SAS, 2004). The design of the application makes model building simple for novice users, while a broad array
of components and functions makes it appropriate for expert users as well. The ability to create composite components
reduces development time when complex model fragments are used over and over.

4.1 Simulation as a Teaching Aid
Management simulations have become prevalent in the education system over the past several decades. While Harvard
and other business schools have developed many simulation games to teach management strategies to business school
students, we will discuss a few specific applications developed for optimization problem solving and to promote the
teaching of simulation in classrooms. Salas, Wildman, and Piccolo (2009) suggest that simulation-based training (SBT)
offers many advantages as an approach for management education, and provide several practical guidelines regarding
how best to implement simulation-based training in the classroom.

Simulation can be taught with the help of Excel. Paul Jensen (1936-2011) developed Excel-based computational
tools to go with Operations Research. His website www.ormm.net was originally created to support the text Operations
Research Models and Methods, but it has grown in content much beyond the text. The site is remarkably effective in
supporting the goals of OR education and practice. The site provides over 30 add-ins for Microsoft Excel that implement
OR methods and includes add-ins for running simulation-optimization models. The testimonials page of the site lists
hundreds of comments from students and practitioners attesting to the usefulness of the site and the add-ins. Hopefully,
these add-ins are still available even after his passing away. Some of these can still be accessed through his official
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website at the University of Texas, at Austin.

Snarr and Gold (2006) posit the use of mathematical models and simulation in teaching of macroeconomics at the
intermediate level. While models have become complex and sophisticated for students to learn, mathematical software
such as Maple has been used to design simulations as pedagogical aids. Based on the design of a system of equations
to model the economy, thereby simulating the system with Maple and a pilot test of the simulation, they conclude that
symbolic mathematics software can be an effective and student learning tool teaching tool.

Rollins, Gunturi, and Sullivan (2014) discuss, in their paper, a pharma business simulation set up with inputs and
hands-on exercises by their students. The design of this practical exercise involved their pharmacy management students
who made calculations and global decisions, entered their data into a business simulation software and developed a
realistic community pharmacy marketplace. Based on this exercise, their conclusion was that the pharmacy simulation
program was an effective active-learning exercise which enhanced students knowledge and understanding of the business.

Liu et al. (2013) developed a spreadsheet model that incorporated a simulation of the ordering process and an it-
erative procedure to search for near-optimal solutions in a national chain of pharmacies, and is easy to understand by
students and practitioners. The spreadsheet model is well- integrated into the curriculum of several engineering courses
including inventory management, simulation, and optimization and has provided an interactive environment for students
to experience real-life inventory decision making.

5 CONCLUSIONS
In this talk, we have presented a broad overview of the area of Monte Carlo simulation in the context of business appli-
cations. A few applications to business were discussed, especially where models are either complex or not analytically
tractable. Brief ideas were presented about softwares and teaching aids with which we can solve seemingly complex
problems through Monte Carlo simulation. It is hoped that the above discussion will lead to better understanding of the
utility of MC simulation to business analysis and decision making as well as its implementation procedures.
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